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Abstract

The present paper proposes a new treatment effects estimator that is valid when the

number of time periods is small, and the parallel trends condition holds conditional on

covariates and unobserved heterogeneity in the form of interactive fixed effects. The esti-

mator also allow the control variables to be affected by treatment and it enables estimation

of the resulting indirect effect on the outcome variable. The asymptotic properties of the

estimator are established and their accuracy in small samples is investigated using Monte

Carlo simulations. The empirical usefulness of the estimator is illustrated using as an ex-

ample the effect of increased trade competition on firm markups in China.
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1 Introduction

A key assumption in treatment effects studies is that there cannot be any unobserved system-

atic differences between treated and untreated cross-sectional units in absence of treatment.
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This is the so-called “parallel trend” assumption, which has long been acknowledged to be

controversial in practice. Yet there have been surprisingly few formal attempts to resolve the

issue, despite the huge empirical literature that has emerged. The standard approach in the

panel data context is to assume that any non-parallel trending can be captured using fixed

effects. But then this assumption is known to be restrictive. Interactive effects can be used

to allow for more general types of non-parallel trending. Here the time effects, or “common

factors”, represent common trends and the individual effects, or “ factor loadings”, measure

the extent to which the impact of these trends is equal, or parallel, across units.

Chan and Kwok (2022) allow for non-parallel trending in the form of interactive effects

that are dealt with using a version of the principal components-based approach of Bai (2009).

However, this method requires that the number of time periods, T, is large, and in treatment

effects studies T is often small (see Bertrand et al., 2004, for a survey). The approach also

requires solving a non-convex optimization problem, which means that it is not only compu-

tationally costly but it can also be difficult to get to converge, and even if it does converge

it may not be to the global optimum (see Moon and Weidner, 2019). Callaway and Karami

(2020) and Brown and Butts (2022) provide treatment effects estimators that are valid even if

T is small. However, these estimators are based on generalized method of moments (GMM),

which is computationally burdensome and rely on the availability of certain external instru-

ments. Both estimators require that the number of unobserved factors is know, which is of

course never the case in practice.

In this paper, we propose a new treatment effects estimator that is not only valid when

T is fixed and the number of factors is unknown but that is also extremely simple to imple-

ment. Moreover, unlike most existing estimators, the new estimator is applicable even if the

covariates are affected by the treatment status, which is likely to be the case in practice (see

Caetano et al., 2022, for a discussion). It is therefore very attractive from an empirical point of

view. This attractiveness is achieved by our novel use of the common correlated effects (CCE)

approach of Pesaran (2006), which has a closed form, does not require T to be large and is

valid provided only that the number of factors is not larger than the number of observables.
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The object of interest is the average treatment effect on the treated (ATT), which is the average

difference between the actual and counterfactual post-treatment outcomes of treated cross-

section units. This average could be computed had it not been for the fact that the counterfac-

tual outcome is unobserved. We therefore have to estimate, or “impute”, it and this is where

the CCE approach come in. The proposed CCE-based difference-in-differences (DD) estima-

tor, dubbed “C2ED2” and pronounced “Cetoo-E-Detoo”, is computed in four steps.1 We begin

by estimating the common factors using cross-sectional averages of the outcome variable and

covariates from the never-treated sample, as prescribed by CCE. We then estimate the slope

coefficients of the controls along with the heterogeneous factor loadings conditional on the

first-step factor estimates. In the third step, we use the first- and second-step estimates to es-

timate untreated covariates in post-treatment periods. In the fourth and final step, we use the

first- and second-step estimates together with the third-step estimated covariates to estimate

counterfactual outcomes. The estimated ATT is the average difference between the observed

treated and estimated counterfactual outcomes.

The new estimator is shown to be consistent and asymptotically normal under very gen-

eral condition provided only that the number of cross-sectional units, N, is large enough, a

results that is verified in finite samples by means of a small-scale Monte Carlo simulation

study. As an empirical illustration, we consider as an example the effect of increased trade

competition on the dispersion of markups in China.

The rest of the paper is structured as follows. Section 2 presents the model and defines

the ATT, the estimation of which is the concern of Section 3. Sections 4, 5 and 6 contain the

asymptotic, Monte Carlo and empirical studies, respectively. Section 7 concludes. All proofs

are relegated to the online appendix.

2 The model

We are interested in estimating the ATT of a particular treatment on some outcome variable

yi,t, observable for i = 1, ..., N cross-sectional units and t = 1, ..., T time periods. We allow for

1The name and its pronunciation are inspired by the Star Wars robot character R2-D2.
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the possibility that the N units can be divided into groups within which treatment timing is

the same. We follow Callaway and Sant’Anna (2021) in defining a treatment group by the time

period in which they enter treatment. There are G such groups indexed by g ∈ G ⊂ {2, ..., T},

which for notational convenience is also the period at which the units of group g enter treat-

ment. Hence, if G = {4, 8}, then there are |G| = 2 groups, the first (second) of which enter

treatment in time period g = t = 4 (g = t = 8). Treated units never leave their groups but

remain exposed for all periods after entering treatment; that is, treatment is of the “absorb-

ing state”. A unit that is never treated is a member of group g = ∞. Treatment timing is

randomly assigned conditional on the unobserved interactive effects. Let us therefore denote

by gi ∈ G+ = G ∪ {∞} a random variable stating the group membership of cross-sectional

unit i, and by Ig = {i : gi = g ∈ G+} ⊂ {1, ..., N} the set of cross-sectional units that are

members of group g. The set of non-treated units is therefore denoted I∞, and it is conve-

nient to let I c
∞ = {1, ..., N}\I∞ denote the set of treated units. The number of cross-sectional

unit within group g is given by |Ig|. The start of the first treatment is henceforth denoted

gmin = min{g1, ..., gN}.

Following the previous literature, we denote by yi,t(g) the “potential” outcome of cross-

sectional unit i in period t when member of group g ∈ G+. Of course, we do not observe

yi,t(g) simultaneously for all g; instead we observe yi,t = yi,t(gi), the realized outcome for

unit i at time t. We may also observe covariates, whose outcome may again depend on treat-

ment status. In our empirical application, the outcome variable is industry-level markup

dispersion, treatment is China’s ascension into WTO, and a key control variable is the disper-

sion in marginal-cost. Our analysis allows treatment to affect the dispersion of both prices

and marginal-cost and quantify the effect of markup-dispersion on the outcome.

Let us therefore introduce the m× 1 vector xi,t(g), whose realized value is given by xi,t =

xi,t(gi). The model for yi,t(∞) that we will be considering is given by

yi,t(∞) = β′ixi,t(∞) + α′ift + εi,t, (1)

where βi is a m× 1 vector of heterogeneous slope coefficients, ft is a r× 1 vector of unobserv-

able common factors, αi is a r × 1 vector of factor loadings, and εi,t is an idiosyncratic error
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term.2 The interactive effects are given here by α′ift. The purpose of these is to capture non-

parallel trending behaviour, that is, unobserved differences in trends between treated and

untreated units in absence of treatment. In this terminology, the factors represent common

trends and the loadings measure the extent to which the effect of these trends are equal, or

parallel, across units. We are not interested in inference on these effects.3 Accurate estimation

of αi is therefore not needed.

Unlike αi, βi is often of some interest. However, since in the present paper T is fixed, we

cannot estimate each individual slope accurately. The best that we can hope for is accurate

estimation of β = E(βi). In fact, in many applications in economics (and elsewhere) we are

not particularly interested in the marginal effect for a particular unit anyway and so we focus

instead on the average marginal effect. The C2ED2 approach enables inference on β but the

main object of interest is as already pointed out the ATT.

We want to entertain the possibility that xi,t(∞) load on ft, because otherwise the factors

can be ignored without cost.4 Also, many variables are affected by common shocks, and it is

not difficult to find empirical evidence in support of this (see, for example, Westerlund et al.,

2019). Let us therefore assume that

xi,t(∞) = λ′ift + vi,t, (2)

where λi is a r×m matrix of factor loadings and vi,t is a m× 1 vector of idiosyncratic errors.

We are now ready to introduce the ATT. The treatment effect for unit i at time t when

treated in time g is given by

∆i,g,t = yi,t(g)− yi,t(∞), (3)

Because we do not observe yi,t(g) and yi,t(∞) simultaneously, ∆i,g,t must be treated as un-

known and estimated from the data. This brings us back to the discussion in the previous

paragraph about βi; because T is fixed, the best that we can hope for is accurate estimation of

2The presence of β′ixi,t(∞) in (1) is an allowance and not a requirement. If there are no regressors, we define
β′ixi,t(∞) = 0. It is important to note, though, that if there are no regressors, the number of factors can be at most
one unless there are outside factor proxies (r ≤ 1), as will be made clear in Section 3.

3In fact, inference on αi and ft is not even possible, as they are not separately identifiable.
4If xi,t(∞) does not load on ft, βi can be estimated by ordinary least squares (OLS) as in Wooldridge (2005).

5



the ATT, which is the average ∆i,g,t for group g;

E(∆i,g,t|gi = g) = ∆g,t (4)

for t ≥ g ∈ G. Note that while there cannot be any systematic variation across units within

groups, we do allow ∆g,t to vary freely over time and across groups, which means that the

effect of the treatment need not take place abruptly at time g but can be gradual in nature. The

effect cannot take place prior to treatment, though, which is the so-called “no anticipation”

condition. Formally, we require that yi,t(g) = yi,t(∞) for all not-yet-treated observations

t < g ∈ G.5

Most studies assume that the covariates are unaffected by the treatment and in this case

the model for yi,t(g) can be obtained by simply inserting (1) into (3) (see, for example, Chan

and Kwok, 2022). In the present paper, however, there is no such assumption. In order to

be able to separate the part of the ATT that is due to the covariates from the part that is

not, we define τi,g,t = xi,t(g)− xi,t(∞) and ηi,g,t = ∆i,g,t − τ′i,g,tβi. In the terminology of the

mediation literature (see, for example, Huber, 2014), ηi,g,t is the “direct” effect of treatment

and τ′i,g,tβi is the mediated effect of treatment through the covariates, henceforth referred to

as the “indirect” effect. Hence, provided that τi,g,t and βi are independent, defining ηg,t =

E(ηi,g,t|gi = g) and τg,t = E(τi,g,t|gi = g), the total ATT can be decomposed as follows:

∆g,t = ηg,t + τ′g,tβ, (5)

where ηg,t and τ′g,tβ are the direct and indirect ATTs, respectively.

3 The C2ED2 estimator

3.1 The total ATT

The estimation of the ATT is carried out using a version of what Borusyak et al. (2021) refer

to as the “imputation” approach, or what Xu (2017) refer to as the “generalized synthetic

control” method, which is based on replacing all unknowns in the definition of ∆g,t in (4) by

estimates. Note first that since yi,t(g) is observed for treated units in post-treatment periods,

5If treated units anticipate treatment up to s periods before g, shift treatment timing to g− s.
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we have yi,t = yi,t(g) for treated units post-treatment. Let us therefore turn to yi,t(∞). We

need to estimate this counterfactual for all treated units in post-treatment periods. CCE takes

cross-sectional averages of the outcome and covariates as estimators of (the space spanned by)

the factors. We tailor this procedure to the present treatment effect scenario where treatment

status can affect both outcomes and covariates in unspecified ways. We use never-treated

observations to estimate the factors. Then, for the treated units, we estimate the never-treated

potential covariates, which are in turn used to estimate the never-treated potential outcomes.

This method is detailed in the following four-step procedure to the estimation of yi,t(∞).

Counterfactual estimation procedure:

1. Compute

f̂t =
1
|I∞| ∑

i∈I∞

zi,t (6)

for all t, where zi,t = [yi,t, x′i,t]
′ is a (m + 1)× 1 vector containing all the observables. The

above is the regular CCE estimator of ft computed using the never-treated units only.

The fact that f̂t is computed based on the never-treated units only is crucial since in the

present paper both yi,t and xi,t may depend on the treatment, and this in turn may well

render CCE inconsistent. Equally important is the fact that f̂t is computed for all time

periods t. In step 2 the pre-treatment estimates are used to estimate β and {αi}N
i=1, while

in steps 3 and 4 the post-treatment estimates are used to impute yi,t(∞) and xi,t(∞) in

treatment periods.

2. Estimate the following regression by ordinary least squares (OLS) for all i and t < gmin,

where gmin again marks the start of the first treatment:

yi,t = β′xi,t + a′i f̂t + ui,t. (7)

Also, ai is a (m+ 1)× 1 vector of factor loadings and ui,t = α′ift− a′i f̂t + (βi− β)′xi,t + εi,t

is a composite error term. The above OLS regression with f̂t in place of ft is regular

CCE based on the full pre-treatment sample but where f̂t comes from the subsample of
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untreated units.6 Define the (gmin− 1)× 1 vector yi = [yi,1, ..., yi,gmin−1]
′, and the (gmin−

1) × m matrices xi = [xi,1, ..., xi,gmin−1]
′ and f̂ = [̂f1, ..., f̂gmin−1]

′. Let MA = Igmin−1 −

A(A′A)−1A′ for any (gmin − 1)-rowed matrix A. In this notation, the CCE estimators of

β and ai in (7) are given by

β̂ =

(
N

∑
i=1

x′iMf̂xi

)−1 N

∑
i=1

x′iMf̂yi, (8)

âi = (̂f′f̂)−1f̂′(yi − xi β̂), (9)

where the latter estimator is computed for all i. The fact that âi is computed for all i

is again important, because in step 3, yi,t(∞) and xi,t(∞) will be estimated for treated

units.

3. Compute

x̂i,t(∞) = λ̂′i f̂t (10)

for all treated observations i ∈ I c
∞ and t ≥ gi. Here, {f̂t}t≥gmin is from step 1 and

λ̂i = (̂f′f̂)−1f̂′xi, (11)

where f̂ and xi are the same as in step 2. Note that λ̂i is the OLS estimator of λi in the

following regression, which is estimated for each i ∈ I c
∞ individually and t < gmin:

xi,t = λ′i f̂t + wi,t, (12)

where wi,t = λ′i(ft − f̂t) + vi,t.

4. The sought counterfactual estimator is given by

ŷi,t(∞) = β̂′x̂i,t(∞) + â′i f̂t (13)

which is again available for all treated observations. Here β̂ and {âi}i∈I c
∞

are from step

2, {f̂t}t≥gmin is from step 1, and {x̂i,t(∞)}i∈I c
∞,t≥gi comes from step 3.

6Note that unlike when using the principal components method, in CCE there is no need to recompute f̂t if
the time period changes, and hence {f̂t}t≥gmin can be taken directly from step 1.
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A few remarks are in order. First, while β̂ is consistent, âi is not and in fact remains random

even asymptotically because T is fixed. Moreover, the asymptotic distribution is not centered

at αi but at a certain rotation of ai. Interestingly, as we show in Section 3.2, these problems do

not interfere with the consistency and asymptotic normality of the estimated ATT.

Second, one can allow β to vary systematically across groups without affecting the asymp-

totic validity of the estimated ATT. The only change needed is that the step-2 estimation of

this coefficient has to be carried out group-wise, as opposed to just once for all N units. This

gives {β̂g}g∈G , which should then be inserted instead of β̂ in step 3.

Third, as Caetano et al. (2022) point out, the validity of estimates of the ATT depends

on whether or not the covariates are affected by treatment status. For example, if we are

estimating the effect of a certain policy aimed at reducing unemployment, we might want

to control for the rate of poverty. But then such policies might indirectly reduce poverty,

which means that the poverty rate covariate will absorb some of the treatment effect. This is

what Angrist and Pischke (2009) call a “bad control”. It creates a dilemma where including

the covariate induces “post-treatment bias” and excluding it induces “omitted variables bias”

(see Aklin and Bayer, 2017). In this paper we follow Caetano et al. (2022), and solve this

dilemma by imputing and controlling for untreated potential covariates, xi,t(∞). In fact, we

go a step further and allow for inference in this indirect effect.

With yi,t(g) known and yi,t(∞) estimated, the estimated treatment effect is given by

∆̂i,g,t = yi,t − ŷi,t(∞) (14)

for i ∈ Ig ⊂ I c
∞. The estimated ATT for group g at time t is obtained by averaging over the

relevant treated group;

∆̂g,t =
1
|Ig| ∑

i∈Ig

∆̂i,g,t. (15)

This is the C2ED2 estimator of ∆g,t.

It is important to note that the C2ED2 estimator does not involve any estimation of the

number of factors, r. This is in stark contrast to existing principal components-based ap-

proaches such those of Chan and Kwok (2022), and Xu (2017), and GMM approaches such as
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those of Callaway and Karami (2020), and Brown and Butts (2022), where asymptotic theory

is based on treating r as known. This means that in empirical work, r has to be replaced by

an estimator, and accurate estimation of this object is known to be a difficult (see, for exam-

ple, Moon and Weidner, 2015, and Breitung and Hansen, 2021). The fact that the proposed

estimator does not require estimation of r is therefore a great advantage in practice.

Asymptotic standard errors of estimates of the ATT are generally difficult to compute.

Many studies therefore resort to bootstrap inference (see, for example, Callaway and Karami,

2020, and Xu, 2017), which can be computationally unattractive. We instead employ a ver-

sion of the non-parametric variance estimator considered by Pesaran (2006). The appropriate

estimator to use in our case is

σ̂2(∆̂g,t) =
1

|Ig| − 1 ∑
i∈Ig

(∆̂i,g,t − ∆̂g,t)
2. (16)

In addition to being simple to compute, non-parametric standard errors are robust and they

tend to perform well in small samples (see, for example, Chudik et al., 2011, Pesaran, 2006,

and Westerlund and Kaddoura, 2022).

3.2 The direct and indirect ATTs

We demonstrate in Section 2 how the total ATT ∆i,g can be decomposed into the direct ATT,

ηi,g, and the indirect ATT, τ′i,gβ. We now demonstrate how to estimate these constituent parts.

The estimator of τg,t is completely analogous to that of ∆g,t, and is given by

τ̂g,t =
1
|Ig| ∑

i∈Ig

τ̂i,g,t, (17)

where τ̂i,g,t = xi,t − x̂i,t(∞). In the empirical literature, significant estimates of τ̂g,t is some-

times taken as evidence of indirect treatment effects. However, even if the covariates are

affected by treatment, this does not necessarily imply that the outcome is affected, as the ef-

fect of changing the covariates on the outcome is determined by their partial effects, here

represented by βi. The proposed C2ED2 approach recognizes this possibility. Our estimate of

the indirect ATT is given by the product τ̂′g,t β̂, where β̂ is from step 2 of the counterfactual
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estimation procedure. Given τ̂′g,t β̂, the estimated direct ATT is given by

η̂g,t = ∆̂g,t − τ̂′g,t β̂. (18)

The variances of τ̂g,t and η̂g,t can be estimated non-parametrically in the following obvious

way:

Σ̂(τ̂g,t) =
1

|Ig| − 1 ∑
i∈Ig

(τ̂i,g,t − τ̂g,t)(τ̂i,g,t − τ̂g,t)
′, (19)

σ̂2(η̂g,t) =
1

|Ig| − 1 ∑
i∈Ig

(η̂i,g,t − η̂g,t)
2. (20)

Note that σ̂2(η̂g,t) is a direct estimator of the variance of the estimated direct ATT. The corre-

sponding estimator of the variance of the estimated indirect ATT is given by β̂′Σ̂(τ̂g,t)β̂.

The above estimator of ηg,t is of the plug-in type; it takes the definition of ηg,t and plugs in

estimates in places of true quantities. An alternative estimation approach is to take ∆̂g,t but to

replace x̂i,t(∞) with x̂i,t when computing ŷi,t(∞) in step 4 of the counterfactual estimation pro-

cedure. The fact that changing the way that the covariates enter in step 4 alters the object being

estimated is important not only for the present paper but also when considering the works of

others. As mentioned earlier, Chan and Kwok (2022) proposes a principal components-based

estimator of the ATT that assumes that the covariates are unaffected by treatment and they

use the observed covariates in their estimations. Logic based on our findings suggests that if

the unaffected covariates assumption is false, Chan and Kwok’s estimator will only capture

the direct ATT. In the empirical illustration of Section 6, we elaborate on this point.

4 Asymptotic results

In this section, we study the asymptotic properties of the estimated total ATT and its direct

and indirect parts. The conditions that we will be working under are given in Assumptions

1–9. Here and throughout, tr A, rank A and ∥A∥ =
√

tr (A′A) denote the trace, the rank, and

the Frobenius (Euclidean) norm of the generic matrix A, respectively. The symbols →d and

→p signify convergence in distribution and probability, respectively.

Assumption 1. gmin > m + 2.
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Assumption 2. plimN→∞|Ig|/N ∈ (0, 1) for all g ∈ G+.

Assumptions 1 and 2 are sample size conditions. They ensure that gmin is large enough

to ensure that the step-2 regression model in (7) is feasible and also that each group is non-

negligible as N increases, which is necessary for accurate estimation of the group-specific

ATTs. We write Assumption 2 in terms of convergence in probability because |Ig| is a random

quantity.

Assumption 3. βi = β + νi, ∆i,g,t = ∆g,t + υi,t, and τi,g,t = τg,t + ζ i,t where νi, υi,t, and ζ i,t are

independently distributed across i and t with zero mean, and finite fourth-order cumulants.

Assumption 3 is a random parameter condition that is largely the same as in Chan and

Kwok (2022), and Gobillon and Magnac (2016). None of parameters are required to be hetero-

geneous, as the covariance matrices of νi, υi,t and ζ i,t need not be positive definite.

Before we continue onto Assumption 4, is it useful to first lay out some additional nota-

tion. Step 1 of the counterfactual estimation procedure uses the cross-sectional averages of

the observables in zi,t for the untreated units to estimate the factors. This means that both

yi,t and xi,t have to be informative of those factors. By combining (1) and (2) we arrive at the

following static factor model for zi,t:

zi,t = Λ′ift + ei,t, (21)

where Λi = [αi + λiβi, λi] is r × (m + 1) and ei,t = [εi,t + β′ivi,t, v′i,t]
′ is (m + 1) × 1. This

expression for zi,t implies that f̂t can be written in the following way:

f̂t =
1
|I∞| ∑

i∈I∞

zi,t =
1
|I∞| ∑

i∈I∞

Λ′ift +
1
|I∞| ∑

i∈I∞

ei,t. (22)

Assumptions 4–6 below ensure that the average ei,t tends to zero as N increases and that the

average Λi has full row rank, which in turn ensure that f̂t is consistent for the space spanned

by ft.

Assumption 4. εi,t and vi,t are independently distributed across i with zero mean, and finite

fourth-order cumulants.
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Assumption 5. ft, gi, εi,t, vi,t, νi, ζ i,t, and υi,t are mutually independent.

Assumption 6. rank(|I∞|−1 ∑i∈I∞ Λi) = r ≤ m + 1 almost surely.

Assumption 7. The r× r matrix ∑T
t=1 ftf′t is positive definite for all T.

Assumption 8. N−1 ∑N
i=1 x′iMf̂xi →p Σ as N → ∞, where the m × m matrix Σ is positive

definite.

Assumptions 7 and 8 are standard non-collinearity conditions. Assumption 7 generalizes

the usual “within assumption” in the individual fixed effects only model, which rules out

time-invariant regressors. Assumption 7 rules out more general “low-rank” regressors, as it

is almost always done in models with interactive effects (see Moon and Weidner, 2015, for a

discussion). The exclusion restriction is not very restrictive, though, as it does not rule out low

rank regressors in the model for yi,t. If there are such regressors present, then these should

be treated as observed factors, which can be appended to f̂t in step 1 of the counterfactual

estimation procedure, as we illustrate in Section 6. This is an advantage in the sense that while

βi and ∆i,g,t are subject to the random parameter condition in Assumption 3, αi is not. Hence,

unlike the coefficients of the observed covariates, the coefficients of low rank regressors are

not restricted in any way. The disadvantage of this observed factor treatment of low rank

regressors is that we cannot estimate their coefficients.

An important point about Assumptions 1–8 is that the time series properties of ft, εi,t, vi,t

and ∆i,g,t are essentially unrestricted. Chan and Kwok (2022) allow for non-stationary factors

and regressors (in a large-T setting) but the regression errors have to be stationary, which is

tantamount to requiring that the observables are cointegrated with the factors. Assumptions

1–8 are more general in this regard. One implication of this generality is that as long as

m + 1 ≥ r there is no need to model the deterministic component of the data, as deterministic

regressors can be treated as additional (unknown) factors to be estimated from the data. If

there are common known deterministic terms, such as an intercept or a linear time trend,

these can be inserted into f̂ along with the cross-sectional averages. As with the dynamics,

the type of heteroskedasticity that can be permitted is not restricted in any way.
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We are now ready to state Theorem 1, which contains our two main results.

Theorem 1. Under Assumptions 1–8, as N → ∞,

(a)

√
|Ig|(∆̂g,t − ∆g,t)

σ(∆̂g,t)
→d N(0, 1),

(b) σ̂2(∆̂g,t)→p σ2(∆̂g,t),

where the definition of σ2(∆̂g,t) is provided in the appendix.

The proof of Theorem 1 is contained in the appendix, where we show that
√
|Ig|(∆̂g,t −

∆g,t) is asymptotically mixed normal, and that this implies that
√
|Ig|(∆̂g,t − ∆g,t)/σ(∆̂g,t)

is asymptotically standard normal. This result is unintuitive given the inconsistency of âi in

step 2 of the counterfactual estimation procedure, as mentioned earlier. The reason is that

the asymptotic distribution of âi is centered at a rotated version of ai, and that the effect of

this rotation is absorbed in the estimation of ft. The asymptotic distribution of ∆̂i,g,t − ∆i,g,t is

therefore correctly centered at zero despite the inconsistency, and it is independent across i.

Asymptotic normality is therefore possible after averaging over the relevant subsample.

Another point about Theorem 1 is that it holds even if r is unknown, provided only that

m + 1 ≥ r, so that the number of factors is not under-specified. As we show in the proof,

while σ2(∆̂g,t) depends on whether m + 1 = r or m + 1 > r, this dependence is successfully

mimicked in large samples by σ̂2(∆̂g,t). We can therefore show that√
|Ig|(∆̂g,t − ∆g,t)

σ̂2(∆̂g,t)
=

√
|Ig|(∆̂g,t − ∆g,t)

σ2(∆̂g,t)
+ op(1)→d N(0, 1) (23)

as N → ∞. Asymptotically valid inference is therefore possible for any r satisfying m + 1 ≥ r.

This robustness is particularly important given the well-known bias problem of post-selection

estimators (Leeb and Pötscher, 2005).

The asymptotic distributions of the direct and indirect ATTs are a direct consequence of

Theorem 1 and the consistency of β̂, and are summarized in the following corollary.

Corollary 1. Suppose that the conditions of Theorem 1 are met. Then, as N → ∞,
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(a)

√
|Ig|(τ̂′g,t β̂− τ′g,tβ)√

β̂′Σ̂(τ̂g,t)β̂
→d N(0, 1),

(b)

√
|Ig|(η̂g,t − ηg,t)

σ̂(η̂g,t)
→d N(0, 1).

5 Monte Carlo simulations

In this section, we present the results of a small-scale Monte Carlo study. The processes used

to generate the potential treated outcome and covariates, yi,t(∞) and xi,t(∞), respectively,

are given by restricted versions of (1) and (2) that set r = m = 2 and ft = [1, t]′. Equation

(2) is generated with λi = I2 + Zi, where the elements of Zi are drawn independently from

N(0, 1), as are the elements of vi,t. Equation (1) is generated with βi = β = [1, 1]′ for all

i and αi ∼ diag(λi) + θdi + N([0, 0]′, I2), where di = 1(i ∈ I c
∞) is a dummy that is one if

cross-section unit i is treated and zero otherwise, and diag(λi) vectorizes the main diagonal

of λi. The term θdi controls whether the parallel trend condition is met. If θ = [0, 0]′, then

E(αi) = [1, 1]′ for all i and so trends are on average parallel, whereas if θ = [0, 1]′, then

E(αi) = [1, 1 + di]
′, and so the treated and untreated cross-sectional units are on different

trend paths. The presence of diag(λi) makes αi correlated with λi, which in turn means that

xi,t(g) is endogenous. The regression errors are allowed to be serially correlated through

εi,t = ρεi,t−1 + ui,t, where εi,0 = 0, ρ = 0.75 and ui,t ∼ N(0, 1).

The potential treated outcome and covariates are generated as yi,t(g) = ∆g + yi,t(∞) and

xi,t(g) = τg + xi,t(∞), respectively, which means that in this data generating process the direct

treatment effect is given by ηg = ∆g− τ′gβ. We assume that there is just one treated group and

randomly assign half of the cross-sectional units to this group. Consistent with the empirical

illustration of Section 6, we set N = 164 and T = 9. Treatment starts in period seven, and so

g = gmin = 7. As for τg and ∆g, we consider two cases. In the first, ∆g = 1 and τg = [0, 0]′,

and therefore the direct ATT is given by ηg = ∆g = 1, whereas in the second, ∆g = 2 and

τg = [0, 1]′, which means that while ηg = 1 is the same as before, now there is also an indirect

ATT equal to τ′gβ = 1.

15



The C2ED2 procedure is implemented exactly as described in Section 3. We focus on the

total ATT. The results for the direct and indirect ATTs were very similar and are available upon

request. The C2ED2 results are compared to those obtained by using two-way fixed effects

OLS with one treatment dummy for each of the three treatment periods, which represents the

workhorse of the empirical treatment effects literature. We consider two specifications; one

that accounts for the covariates and one that ignores them. For each estimator, we report the

average bias and the mean squared error (MSE). The number of replications is set to 1,000.

INSERT TABLES 1 AND 2 ABOUT HERE

Tables 1 and 2 report the results for the cases when the parallel trend condition holds

and when it fails, respectively. We begin by considering Table 1. Since in this case trends

are parallel and the covariates are unaffected by the treatment, even the OLS estimator that

omits the covariates is expected to be unbiased, which is just what we see in the table. The

ranking of the three estimators in terms of MSE is also as expected with the C2ED2 estimator

that accounts for both factors and covariates outperforming the competition. The covariate-

augmented OLS estimator is biased when the indirect ATT is nonzero. This is due in part to

the correlation between αi and λi, which causes an omitted variables bias when the covari-

ates are included but the factors are not appropriately accounted for, in part to the fact that

controlling for the covariates absorbs the indirect ATT, as pointed out in Section 3. According

to Table 2, if trends are not parallel, OLS breaks down regardless of whether it is covariate-

augmented or not, which is again just as expected because fixed effects OLS is inconsistent in

this case.

6 Empirical illustration

One of the channels through which competition may affect gains from trade is via changes in

markups, which measures the ability of firms to charge prices above their marginal costs. As

is well-known, first-best efficiency is obtained when markups are the same across goods. Of

course, in practice markups are never the same and this raises the possibility of so-called “pro-

competitive” effects of trade, which is the idea that trade liberalization through increased
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competition drive down both the level and dispersion of markups, leading to increased ef-

ficiency. Moreover, welfare improves when consumers benefit from lower markups of the

goods they consume and when producers gain from higher markups in foreign markets.

Since its accession into the World Trade Organization (WTO) in the end of 2001, China’s

role in the world economy has grown enormously. As a result, the pro-competitive effects of

China’s WTO accession have attracted considerable attention, so much so that there is by now

a separate strand of literature devoted to them. The bulk of the evidence seem to suggest that

both the level and dispersion of markups have gone down following the WTO entry, and that

this development has had important welfare effects (see, for example, Hsu et al., 2020).

The purpose of the current application is to contribute to the above mentioned literature.

This is done in two ways. First, we account for general forms of unobserved heterogeneity.

The standard approach in the literature is to exploit differences in tariffs across industries.

The basic idea is to split the sample of industries into a treatment and a control group, where

the former is assumed to be relatively more exposed to the WTO accession. Given that pre-

WTO tariffs varied greatly across industries, the argument goes on to say that industries that

had previously been protected with relatively high tariffs experienced greater tariff reduc-

tion. They should therefore be relatively more exposed. The effect of the WTO accession is

then estimated via a standard DD-style OLS regression in which markup is regressed onto

a dummy variable that takes on the value one for treated industries in post-WTO periods,

control variables, and industry and time fixed effects.

While popular, the standard approach to WTO evaluation has (at least) two drawbacks.

One drawback is that it requires that in absence of treatment the difference between the treat-

ment and control groups is constant over time. Trends therefore have to be parallel, which is

known to be restrictive. A very commonly cited reason is that certain industries have more

lobbying power for protection. Tariffs may be granted in response to domestic special interest

groups, the pressure of which may vary over time (see, for example, Fan et al., 2018, Deng

et al., 2018, and Xiang et al., 2017). Differences in lobbying power may therefore cause the

treatment and control groups to differ systematically over time even if China had not joined
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the WTO in 2001.7 Such differences are problematic as they render the fixed effects OLS es-

timator inconsistent, as the Monte Carlo results of Section 5 illustrates. The main problem is

that many sources of possible non-parallel trending are unknown and lack good proxies. For

this reason, in lack of better alternatives, it is common to control for industry-specific linear

time trends (see, for example, Liu and Qiu, 2016, and Mao and Xu, 2019). Deterministic trends

can account for some non-parallel trending but not all. Moreover, results tend to be highly

sensitive to the inclusion of such trends, which reinforces the sentiment in the literature that

non-parallel trending is an important issue.8

Another drawback of the standard approach is that it is not designed to deal with the

case when both the outcome and the covariates are affected by treatment. This is important

because the literature has identified many channels through which the WTO accession may

affect markups (see Mao and Xu, 2019, Fan et al., 2018, Deng et al., 2018, Liu and Ma, 2021,

and Brandt et al., 2017, to mention a few). Two common examples are the price- and cost-

change channels. Markup is defined as the ratio of price to marginal cost. This means that

markup changes can emanate from price changes, cost changes, or both. It is therefore com-

mon to include one of these variables as a covariate and also to estimate the effect of the WTO

accession on them (see, for example, Mao and Xu, 2019, Fan et al., 2018, and Lu and Yu, 2015).

But then we know from Section 3 that treatment-affected covariates require special treatment

or else the estimated ATT will be misleading. Specifically, the inclusion of such covariates will

absorb the indirect ATT. Some researchers seem to be aware of this. The following quotation,

taken from Fan et al. (2018, page 116), is quite suggestive: “If the marginal-cost channel in-

deed plays a role, then once the marginal costs are included as an explanatory variable, we

would witness attenuation of the impact of input tariffs on markups.” However, it is not until

recently that researchers in econometrics have considered the possibility of treatment-affected

covariates, and there is still much to do (see Caetano et al., 2022). Empirical researchers there-

7Similarly, policymakers may lower tariffs selectively only in industries that are able to compete with rel-
atively less expensive imports, for example, in industries experiencing a productivity boom (see Brandt et al.,
2017).

8Some studies include common controls that are thought to be highly correlated with various kinds of pro-
tectionism, such as wage rates, employment, exports, and imports (see, for example, Hsu et al., 2020). Again the
results tend to be very sensitive.
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fore have little or no option but to either ignore the problem or to exclude all potentially bad

controls from their specifications.

The present paper is not the first to point to these shortcomings, but it is the first to consider

an econometric approach that is designed to deal with both in a rigorous way. The C2ED2

approach allows for interactive effects in which there may be unobserved differences between

cross-sectional units that change over time as a result of common shocks. The parallel trend

condition is therefore not required, which is a substantial advantage when compared to the

standard fixed effects-based approach. Another advantage of the approach that we exploit

in this section is that it not only allows for covariates that may be affected by treatment but

that it makes it possible to assess the relative importance of the direct and indirect treatment

channels. It should therefore be well suited for the problem at hand.

The data set that we use is taken from Lu and Yu (2015) (see also Deng et al., 2018, who

use the same data), and comprise 164 industries (three-digit Chinese industrial classification)

observed over the 1998–2005 period. The smallness of T here, which is a feature of most

data sets in the literature, means that it is important to use techniques that work even if T

is not large. The Monte Carlo results reported in Section 5 suggest that the proposed C2ED2

approach should work well. Following Lu and Yu (2015), the outcome variable is markup

dispersion, as measured by the markup Theil index (in logs). Industries are assigned to the

treatment and control groups based on whether they faced tariffs above or below the sample

median in 2001.

Our preference to focus on the Lu and Yu (2015) study is motivated in part by their analysis

of the price- and cost-change channels (see their Section E). As a proxy for marginal costs, the

authors use productivity (TFP). The ATT is estimated via an OLS regression that in addition to

fixed effects, controls and the treatment variable includes the TFP Theil index as a covariate to

account for cost dispersion effects. The authors argue that this should allow them to partially

isolate the price-change channel. In order to assess the ATT of the WTO accession on costs,

the authors run a second OLS regression with the TFP Theil index as dependent variable and

the treatment variable as a covariate. The estimated ATTs are significant, which is taken as
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evidence to suggest that both channels are operational. The purpose of this illustration is to

assess the accuracy of this last conclusion.

The above discussion suggests that in terms of the notation of Section 2, in this section yi,t

is the markup Theil index, and xi,t is the TFP Theil index. The estimated factors in f̂t are made

up of the cross-sectional averages of these variables. A constant is included as an observed

factor (as explained in Section 4), which is tantamount to allowing for industry fixed effects.

We therefore allow for one known and two unknown factors.

INSERT FIGURE 1 ABOUT HERE

The estimated direct and indirect ATTs are reported in Figure 1. The estimates are reported

for each year and averaged over all the post- and pre-treatment periods, as is customary in

the literature. Both types are reported together with 95% confidence intervals. The first thing

to note is that the both the direct and indirect ATTs are estimated to be negative, suggesting

that markup dispersion decreased more after 2001 in industries with relatively high tariffs

in 2001. Given that industries with higher tariffs in 2001 experienced greater tariff reduction

after 2002, these results imply that the WTO accession reduced markup dispersion. We also

note that the pre-treatment estimates are all very close to zero, which means that in this period

there were no differences in the markup Theil index that depended on group membership.

While insignificant in 2002 and 2003, the year-specific total ATTs reported in Figure 1 (a)

are significant in 2004 and 2005. The point estimate in 2003 is notably noisy. A possible reason

for this is that the industry classification system changed in 2003, as noted by, for example,

Chen et al. (2019), and Lu and Yu (2015). The estimated average ATT during the whole post-

treatment period is about−0.1 and significant, which consistent with the results of Chen et al.

(2019).

In order to assess to what extent the decrease in markup dispersion is due to decreases in

TFP dispersion as predicted by the marginal cost channel we look at the estimated indirect

ATTs. According to the results reported in Figure 1 (b), the estimated direct ATTs are negative

and significant in the post-treatment period and insignificant in the pre-treatment period. Lu

and Yu (2015) estimate the ATT on the TFP Theil index and find it to be significantly nega-
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tive; however, their approach does not allow them to infer whether this negative response of

the TFP Theil index has an effect on the markup Theil index. According to our results, the

estimated indirect ATTs are sizable, accounting for almost half of the total ATTs. This is im-

portant in itself but also for what it means for the results reported by Lu and Yu (2015), which

are based on including the TFP Theil index as a covariate. In particular, we know from before

that this type of conditioning will absorb the indirect effect. In this case, since both ATTs are

estimated to be negative and the magnitude of the indirect ATTs are about half of the direct

ATTs, conditioning on the TFP Theil index will lead to an underestimation of the total ATTs

by about 50%. This illustrates quite clearly the importance of being able to account for the fact

that treatment may affect not only the outcome variable but also the covariates.

7 Conclusion

In this paper we propose a new ATT estimator dubbed “C2ED2” that is applicable even when

the parallel trends condition fails because of the presence of unobserved heterogeneity in

the form of interactive fixed effects. Our identification strategy, based on the popular CCE

approach, relies on the presence of covariates that load on the same factors as the outcome

variable. This allows us to use the cross-sectional averages of the observables to impute the

untreated potential outcomes in post-treatment time periods. The covariates are allowed to

depend on the treatment status, and if they do C2ED2 makes it possible separate the direct

ATT that is unrelated to the covariates from the indirect ATT that works through those co-

variates. The estimator is shown to be consistent and asymptotically normal, thereby enabling

standard inference, provided only that the number of cross-sectional units, N, is large, which

is a great advantage in practice because in the literature many data sets involve only a few

time periods.
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Table 1: Monte Carlo results when trends are parallel.

BIAS(∆̂7) MSE(∆̂7) BIAS(∆̂8) MSE(∆̂8) BIAS(∆̂9) MSE(∆̂9)

Direct effect only

OLS -0.00 1.06 -0.02 4.17 -0.03 9.32
OLS with covariates -0.01 0.54 -0.01 1.85 -0.01 3.92
C2ED2 -0.01 0.58 -0.02 1.07 -0.03 1.72
Direct and indirect effects

OLS 0.01 1.07 0.02 4.20 0.03 9.38
OLS with covariates -4.19 18.21 -4.28 20.31 -4.35 23.07
C2ED2 -0.02 0.57 -0.03 1.07 -0.04 1.69

Notes: Data are generated for N = 164 cross-sections and T = 9 time periods to match the sample used in
the empirical illustration. Treatment starts in period gmin = 7. ∆̂7–∆̂9 are the estimated total ATT for the post-
treatment time periods. “BIAS(∆̂t)” and “MSE(∆̂t)” refer to the bias and MSE of the estimated ATT at post-
treatment time period t, respectively. “OLS” and “OLS with covariates” refers to the two-way fixed effects OLS
estimator without and with covariates, respectively. The results are reported for two data generating processes;
one in which there is only a direct effect and one in which there is both direct and indirect effects.

Table 2: Monte Carlo results when trends are not parallel.

BIAS(∆̂7) MSE(∆̂7) BIAS(∆̂8) MSE(∆̂8) BIAS(∆̂9) MSE(∆̂9)

Direct effect only

OLS 4.00 17.07 8.00 68.09 12.00 153.23
OLS with covariates 4.01 16.59 8.01 66.08 12.02 148.37
C2ED2 -0.03 1.17 -0.06 2.26 -0.06 3.55
Direct and indirect effects

OLS 4.00 17.10 8.01 68.44 12.01 153.96
OLS with covariates -0.19 0.68 3.71 15.76 7.63 62.27
C2ED2 -0.06 1.20 -0.06 2.36 -0.06 3.64

Notes: See Table 1 for an explanation.
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Figure 1: Estimated ATTs of China’s WTO accession in 2001 on the markup Theil index.

(a) Estimated total ATT
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(b) Estimated indirect ATT via TFP dispersion
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Notes: The figures present ATT estimates and 95% confidence intervals for the effect of China’s WTO accession
in 2001 on the dispersion of markups as measured by the markup Theil index. The treatment group comprise all
industries that in 2001 had above-median tariff rates. Estimates are computed using the C2ED2 estimator with
the TFP Theil index as a covariate. A constant is included as an observed factor. Figure (a) presents estimates
of the total ATT and figure (b) presents the estimated indirect ATT operating through the TFP Theil index. β̂ in
figure (b) refers to the estimated slope on the TFP Theil index in the markup Theil index regression.
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Abstract

This appendix provides (i) the proof of Theorem 1 reported in the main paper, and (ii)

discussion of some of the assumptions.

1 Proof of Theorem 1

We start with part (a) of the theorem. We begin by considering the step-1 estimator of ft. In

so doing, it is useful to denote by at = (|I∞|)−1 ∑i∈I∞ ai,t the cross-sectional average of any

vector ai,t for the group of untreated units (g = ∞). In this notation, f̂t = zt. Making use of

this and the expression given for zi,t in the main paper,

f̂t = zt = Λ
′ft + et (A.1)

for the pretreatment sample t ≤ gmin. Here, Λ and et are the cross-sectional averages of

Λi = [αi + λiβi, λi] and ei,t = [εi,t + β′
ivi,t, v′

i,t]
′, respectively. If m + 1 = r, then the r × (m + 1)

matrix Λ is square and invertible, which means that (A.1) can be rewritten as

Λ
−1′f̂t = ft + Λ

−1′et. (A.2)

*Corresponding author: Department of Economics, Lund University, Box 7082, 220 07 Lund, Sweden. Tele-
phone: +46 46 222 8997. Fax: +46 46 222 4613. E-mail address: joakim.westerlund@nek.lu.se.
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Hence, because ∥et∥ = Op(N−1/2) under Assumption 4, we have

Λ
−1′f̂t = ft + Op(N−1/2) (A.3)

and hence Λ
−1′f̂t is consistent for ft. In practice, we never observe Λ. However, since α′

ift =

α′
iΛ

−1′f̂t +Op(N−1/2), it is enough if we know f̂t, because Λ
−1 is subsumed in the estimation

of the coefficient of f̂t, which is ai in our notation.

The above analysis is not possible when m + 1 > r since Λ is no longer invertible. How-

ever, we still need something similar to (A.2), because it determines the object that is being

estimated. The way we approach this issue is the same as in Westerlund et al. (2019), and oth-

ers. In particular, we begin by partitioning Λi as Λ = [Λr, Λ−r], where Λ−r is r × (m + 1 − r)

and Λr is r × r and full rank. Note that this partition is without loss of generality under As-

sumption 6. We then introduce the following (m + 1) × (m + 1) rotation matrix, which is

chosen such that ΛH = [Ir, 0r×(m+1−r)] and that is going to play the same role as Λ
−1 under

m + 1 = r:

H =

[
Λ

−1
r −Λ

−1
r Λ−r

0(m+1−r)×r Im+1−r

]
= [Hr, H−r], (A.4)

where Hr = [Λ
−1′
r , 0r×(m+1−r)]

′ is (m + 1) × r, while H−r = [−Λ
′
−rΛ

−1′
r , Im+1−r]

′ is (m +

1) × (m + 1 − r). If m + 1 = r, we define H = Hr = Λ
−1
r = Λ

−1. We further introduce

the (m + 1)× (m + 1) matrix DN = diag(Ir,
√

NIm+1−r) with DN = Im+1 if m + 1 = r. By

pre-multiplying f̂t by DNH′, we obtain

DNH′f̂t = f̂0
t = DNH′

Λ
′ft + DNH′et = f0

t + e0
t , (A.5)

where f0
t = [f′t, 0′(m+1−r)×1]

′ and e0
t = [e′tHr,

√
Ne′tH−r]′ = [e0′

r,t, e0′
−r,t]

′ are both (m + 1) ×

1 with e0
r,t and e0

−r,t being r × 1 and (m + 1 − r) × 1, respectively. Hence, since ∥e0
r,t∥ =

Op(N−1/2) and ∥e0
−r,t∥ = Op(1), when m + 1 > r we are no longer estimating ft but rather

f+t = [f′t, e0′
−r,t]

′;

f̂0
t = f0

t + e0
t =

[
ft

0(m+1−r)×1

]
+

[
e0

r,t
e0
−r,t

]
= f+t + Op(N−1/2), (A.6)

The fact that ft is included in f+t suggests that asymptotically C2ED2 should be able to ac-

count for the unknown factors even if m + 1 > r. By ensuring the existence of H, Assumption

2



6 makes this possible. However, we also note that because of the presence of e0
−r,t, the asymp-

totic distribution theory will in general depend on whether m + 1 = r or m + 1 > r.

It is useful to be able to use the above notation not only when m + 1 > r but also when

m + 1 = r. We therefore define f̂0
t = Λ

−1′f̂t, f0
t = ft and e0

t = Λ
−1′et if m + 1 = r, so that we

are back in (A.2).

Let us now consider ∆̂i,g,t, which, unlike f̂t, is computed based on treated units in post-

treatment periods (i ∈ Ig ⊂ G and t ≥ gmin). Note first that because we are considering

treated units in post-treatment periods, yi,t(g) = yi,t and xi,t(g) = xi,t. Further use of the

definitions of ∆i,g,t, yi,t(∞) and τi,g,t, leads to the following model for yi,t:

yi,t = ∆i,g,t + yi,t(∞) = ∆i,g,t + β′
ixi,t(∞) + α′

ift + εi,t

= ∆i,g,t + β′
i(xi,t − τi,g,t) + α′

ift + εi,t = (∆i,g,t − β′
iτi,g,t) + β′

ixi,t + α′
ift + εi,t

= ηi,g,t + β′
ixi,t + α′

ift + εi,t. (A.7)

It follows that

∆̂i,g,t = yi,t − ŷi,t(∞)

= ηi,g,t + β′
ixi,t + α′

ift + εi,t − [β̂′x̂i,t(∞) + â′i f̂t]

= ηi,g,t + β′
ixi,t + α′

ift + εi,t − (β̂′xi,t + â′i f̂t) + β̂′[xi,t − x̂i,t(∞)]

= ηi,g,t − (β̂ − βi)
′xi,t − (â′i f̂t − α′

ift) + β̂′[xi,t − x̂i,t(∞)] + εi,t. (A.8)

Consider â′i f̂t − α′
ift. While the (m + 1) × r matrix DNH′

Λ
′ is not necessarily square un-

der Assumption 6, it has full column rank. This means that we can compute its Moore–

Penrose inverse, which is given by (DNH′
Λ

′
)+ = (DNH′

Λ
′
)′ = [Ir, 0r×(m+1−r)], such that

(DNH′
Λ

′
)+DNH′

Λ
′
= Ir. Hence, DNH′

Λ
′ft = [f′t, 0′(m+1−r)×1]

′ = f0
t and we also have

DNH′f̂t = f̂0
t . Making use of this, and letting â0

i = (DNH′
)−1′âi = (HDN)

−1âi and α0
i =

(DNH′
Λ

′
)+′αi = DNH′

Λ
′
αi = [α′

i, 01×(m+1−r)]
′,

â′i f̂t − α′
ift = â′i(DNH′

)−1DNH′f̂t − α′
i(DNH′

Λ
′
)+DNH′

Λ
′ft

= â0′
i f̂0

t − α0′
i f0

t

= α0′
i (̂f

0
t − f0

t ) + (â0
i − α0

i )
′f̂0

t , (A.9)
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from which it follows that

∆̂i,g,t = ηi,g,t − (β̂ − βi)
′xi,t − α0′

i (̂f
0
t − f0

t )− (â0
i − α0

i )
′f̂0

t + β̂′[xi,t − x̂i,t(∞)] + εi,t. (A.10)

Amongst the terms appearing on the right-hand side of this last equation, the one involving

â0
i − α0

i requires most work. We therefore start with this. Note first that since âi is estimated

based on the pre-treatment period only, we have yi,t = yi,t(∞) = β′
ixi,t(∞) + α′

ift + εi,t or,

in terms of the stacked vector notation introduced in step 2 of the counterfactual estimation

procedure outlined in the main paper, yi = xiβi + fαi + εi, where yi, xi, f and εi are all (gmin −

1)-rowed. By using this and ΛHr = Ir, we get

yi = xiβi + f̂Hrαi − (̂f − fΛ)Hrαi + εi = xiβi + f̂Hrαi − e0
r αi + εi. (A.11)

We also note that ai in step 2 can be expressed in terms of Hr and αi as ai = Hrαi. By inserting

this and (A.11) into the expression given for âi in step 2,

âi = (̂f′f̂)−1f̂′(yi − xi β̂)

= (̂f′f̂)−1f̂′(xiβi + f̂ai − e0
r αi + εi − xi β̂)

= ai + (̂f′f̂)−1f̂′[−xi(β̂ − βi)− e0
r αi + εi], (A.12)

implying

â0
i = (HDN)

−1âi

= (HDN)
−1ai + (HDN)

−1(̂f′f̂)−1f̂′[−xi(β̂ − βi)− e0
r αi + εi]

= (HDN)
−1ai + (DNH′f̂′f̂HDN)

−1DNH′f̂′[−xi(β̂ − βi)− e0
r αi + εi]

= (HDN)
−1ai + (̂f0′f̂0)−1f̂0′[−xi(β̂ − βi)− e0

r αi + εi] (A.13)

where f̂0 = [̂f0
1, ..., f̂0

gmin−1]
′ = f̂HDN is (gmin − 1) × (m + 1). Consider the first term on the

right-hand side. A direct calculation using the rules for the inverse of a partitioned matrix

(see, for example, Abadir and Magnus (2005), Exercise 5.16) reveals that

(DNH)−1 =

[
Λr Λ−r

0(m+1−r)×r N−1/2Im+1−r

]
, (A.14)
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so that

(HDN)
−1Hr =

[
Λr Λ−r

0(m+1−r)×r N−1/2Im+1−r

] [
Λ

−1
r

0(m+1−r)×r

]
=

[
Ir

0(m+1−r)×r

]
. (A.15)

This implies

(HDN)
−1ai =

[
αi

0(m+1−r)×1

]
= α0

i , (A.16)

leading to the following expression for â0
i − α0

i :

â0
i − α0

i = (̂f0′f̂0)−1f̂0′[−xi(β̂ − βi)− e0
r αi + εi]. (A.17)

We similarly have

x̂i,t(∞) = λ̂′
i f̂t = x′i f̂(̂f

′f̂)−1f̂t = x′i f̂
0(̂f0′f̂0)−1f̂0

t , (A.18)

from which it follows that

β̂′[xi,t − x̂i,t(∞)] = β̂′[xi,t − x′i f̂
0(̂f0′f̂0)−1f̂0

t ]. (A.19)

By inserting the above expressions into the one given earlier for ∆̂i,g,t, we get

∆̂i,g,t = ηi,g,t − (β̂ − βi)
′xi,t − α0′

i (̂f
0
t − f0

t )− (â0
i − α0

i )
′f̂0

t + β̂′[xi,t − x̂i,t(∞)] + εi,t

= ηi,g,t − (β̂ − βi)
′xi,t − α′

ie
0
r,t − [−xi(β̂ − βi)− e0

r αi + εi]
′f̂0(̂f0′f̂0)−1f̂0

t

+ β̂′[xi,t − x′i f̂
0(̂f0′f̂0)−1f̂0

t ] + εi,t

= ηi,g,t + β′
ixi,t − α′

ie
0
r,t + εi,t − (xiβi − e0

r αi + εi)
′f̂0(̂f0′f̂0)−1f̂0

t . (A.20)

Further use of f̂ = f̂0D−1
N H−1 gives

xi = fλi + vi = f̂Hrλi − (̂f − fΛ)Hrλi + vi = f̂0D−1
N H−1Hrλi − e0

r λi + vi, (A.21)

for t < gmin. If, on the other hand, t ≥ gmin, then

xi,t = τi,g,t + λ′
ift + vi,t = τi,g,t + λ′

iH
′
rH

−1′D−1
N f̂0

t − λ′
ie

0
r,t + vi,t. (A.22)

These two last results imply

xi,t − x′i f̂
0(̂f0′f̂0)−1f̂0

t

= τi,g,t + λ′
iH

′
rH

−1′D−1
N f̂0

t − λ′
ie

0
r,t + vi,t − (̂f0D−1

N H−1Hrλi − e0
r λi + vi)

′f̂0(̂f0′f̂0)−1f̂0
t

= τi,g,t − λ′
ie

0
r,t + vi,t − (−e0

r λi + vi)
′f̂0(̂f0′f̂0)−1f̂0

t , (A.23)
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and so we arrive at the following expression for ∆̂i,g,t:

∆̂i,g,t = ηi,g,t + β′
i(τi,g,t − λ′

ie
0
r,t + vi,t)− α′

ie
0
r,t + εi,t

− [(−e0
r λi + vi)βi − e0

r αi + εi]
′f̂0(̂f0′f̂0)−1f̂0

t

= ∆i,g,t − (λiβi + αi)
′e0

r,t + β′
ivi,t + εi,t

− [−e0
r (λiβi + αi) + viβi + εi]

′f̂0(̂f0′f̂0)−1f̂0
t . (A.24)

where ∆i,g,t = ηi,g,t + β′
iτi,g,t as in the main paper.

The above expression for ∆̂i,g,t is the cleanest possible without exploiting the fact that N

is large. Hence, in what remains we are going to let N → ∞. We begin by considering

f̂0(̂f0′f̂0)−1f̂0
t . Define f+ = [f+1 , ...f+gmin−1]

′ = [f, e0
−r], a (gmin − 1)× (m + 1) matrix. We have

already shown that f̂0 = f+ + Op(N−1/2). By using this and the results provided in the proof

of Lemma A.1 in Westerlund et al. (2019), we have that ∥f̂0′f̂0 − f+′f+∥ = Op(N−1/2) and,

more importantly,

∥(̂f0′f̂0)−1 − (f+′f+)−1∥ = Op(N−1/2), (A.25)

where

f+′f+ =

[
f′f f′e0

−r
e0′
−rf e0′

−re
0
−r

]
, (A.26)

(f+′f+)−1 =

[
(f′f)−1 + (f′f)−1f′e0

−r(e
0′
−rMfe0

−r)
−1e0′

−rf(f′f)−1

−(e0′
−rMfe0

−r)
−1e0′

−rf(f′f)−1

−(f′f)−1f′e0
−r(e

0′
−rMfe0

−r)
−1

(e0′
−rMfe0

−r)
−1

]
. (A.27)

The expression for (f+′f+)−1 is again obtained by using the rules for the inverse of a par-

titioned matrix. The fact that ∥(̂f0′f̂0)−1 − (f+′f+)−1∥ = Op(N−1/2) together with f̂0 =

f+ + Op(N−1/2) imply that

f̂0′
t (̂f

0′f̂0)−1f̂0′ = f̂0′
t [(̂f

0′f̂0)−1 − (f+′f+)−1 ]̂f0′ + f̂0′
t (f

+′f+)−1f̂0′

= f̂0′
t (f

+′f+)−1f̂0′ + Op(N−1/2)

= f+′
t (f+′f+)−1f+′ + Op(N−1/2). (A.28)
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where, defining Mf analogously to Mf̂,

f+′
t (f+′f+)−1f+′

= [f′t, e0′
−r,t]

[
(f′f)−1 + (f′f)−1f′e0

−r(e
0′
−rMfe0

−r)
−1e0′

−rf(f′f)−1

−(e0′
−rMfe0

−r)
−1e0′

−rf(f′f)−1

−(f′f)−1f′e0
−r(e

0′
−rMfe0

−r)
−1

(e0′
−rMfe0

−r)
−1

] [
f′

e0′
−r

]
= f′t(f

′f)−1f′[Igmin−1 − e0
−r(e

0′
−rMfe0

−r)
−1e0′

−rMf] + e0′
−r,t(e

0′
−rMfe0

−r)
−1e0′

−rMf. (A.29)

The fact that ∥f̂0′
t (̂f

0′f̂0)−1f̂0′ − f+′
t (f+′f+)−1f+′∥ = Op(N−1/2) implies

∆̂i,g,t = ∆i,g,t − (λiβi + αi)
′e0

r,t + β′
ivi,t + εi,t

− [−e0
r (λiβi + αi) + viβi + εi]

′f+(f+′f+)−1f+t + Op(N−1/2)

= ∆i,g,t − (λiβi + αi)
′e0∗

r,t + β′
iv

∗
i,t + ε∗i,t + Op(N−1/2), (A.30)

where

a∗i,t = ai,t − a′if
+(f+′f+)−1f+t = ai,t −

gmin−1

∑
s=1

ai,sf+′
s (f+′f+)−1f+t (A.31)

for any vector ai,t with (gmin − 1)-rowed stack ai = [ai,1, ..., ai,gmin−1]
′. In words, a∗i,t is the

limiting “defactored” version of ai,t.

We now make use of the above expression for ∆̂i,g,t to evaluate ∆̂g,t. In so doing, it is

important to note that the order of the reminder incurred when replacing f̂0′
t (̂f

0′f̂0)−1f̂0′ with

f+′
t (f+′f+)−1f+′ is the same even after averaging over group g and multiplying by

√
|Ig|.

In order to appreciate this, we make use of the fact that ∥
√
|Ig|e0

r∥ = Op(1), and since

vi and βi are independent with vi mean zero and independent also across i, we also have

∥(|Ig|)−1/2 ∑i∈Ig viβi∥ = Op(1). It follows that∥∥∥∥∥∥ 1√
|Ig|

∑
i∈Ig

[−e0
r (λiβi + αi) + viβi + εi]

∥∥∥∥∥∥
≤ ∥

√
|Ig|e0

r∥

∥∥∥∥∥∥ 1
|Ig| ∑

i∈Ig

(λiβi + αi)

∥∥∥∥∥∥+
∥∥∥∥∥∥ 1√

|Ig|
∑

i∈Ig

viβi

∥∥∥∥∥∥+
∥∥∥∥∥∥ 1√

|Ig|
∑

i∈Ig

εi

∥∥∥∥∥∥ = Op(1).

(A.32)
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We can therefore show that∥∥∥∥∥∥ 1√
|Ig|

∑
i∈Ig

[−e0
r (λiβi + αi) + viβi + εi]

′[f+(f+′f+)−1f+t − f̂0(̂f0′f̂0)−1f̂0
t ]

∥∥∥∥∥∥
≤

∥∥∥∥∥∥ 1√
|Ig|

∑
i∈Ig

[−e0
r (λiβi + αi) + viβi + εi]

∥∥∥∥∥∥ ∥f+(f+′f+)−1f+t − f̂0(̂f0′f̂0)−1f̂0
t ∥

= Op(N−1/2), (A.33)

which means that the reminder incurred when replacing f̂0′
t (̂f

0′f̂0)−1f̂0′ with f+′
t (f+′f+)−1f+′

is Op(N−1/2) after averaging over group g and multiplying by
√
|Ig|.

For ∆i,g,t, we make use of the fact that ∆i,g,t = ∆g,t + υi,t for i ∈ Ig by Assumption 3, giving√
|Ig|(∆̂g,t − ∆g,t) =

1√
|Ig|

∑
i∈Ig

(∆̂i,g,t − ∆g,t)

=
1√
|Ig|

∑
i∈Ig

(∆̂i,g,t − ∆i,g,t + υi,t)

=
1√
|Ig|

∑
i∈Ig

[υi,t − (λiβi + αi)
′e0∗

r,t + β′
iv

∗
i,t + ε∗i,t] + Op(N−1/2).

(A.34)

Moreover, |Ig|/N →p τg ∈ (0, 1) by Assumption 2. Hence, if we in addition define ag =

plimN→∞(|Ig|)−1 ∑i∈Ig(λiβi + αi), the above expression for
√
|Ig|(∆̂g,t − ∆g,t) becomes√

|Ig|(∆̂g,t − ∆g,t)

=
1√
|Ig|

∑
i∈Ig

(υi,t + β′
iv

∗
i,t + ε∗i,t)−

√
|Ig|
N

1
|Ig| ∑

i∈Ig

(λiβi + αi)
′√Ne0∗

r,t + Op(N−1/2)

=
1√
|Ig|

∑
i∈Ig

(υi,t + β′
iv

∗
i,t + ε∗i,t)−

√
τga′g

√
Ne0∗

r,t + op(1). (A.35)

All the terms on the right-hand side of the above equation are mean zero and independent

across i (conditionally on f). They are therefore asymptotically normal by a central limit

law for independent variables. However, they are not uncorrelated with each other, which

complicates the calculation of the asymptotic variance. Let us therefore define σ2(∆̂g,t) =

var(
√
|Ig|(∆̂g,t − ∆g,t)|C), where C is the sigma-field generated by f. The asymptotic distri-
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bution of
√
|Ig|(∆̂g,t − ∆g,t) as N → ∞ can now be stated in the following way:√

|Ig|(∆̂g,t − ∆g,t) →d MN(0, σ2(∆̂g,t)), (A.36)

where MN(·, ·) signifies a mixed normal distribution that is normal conditionally on C. This

means that the conditional distribution of
√
|Ig|(∆̂g,t −∆g,t)/σ(∆̂g,t) is also the unconditional

distribution. Hence,√
|Ig|(∆̂g,t − ∆g,t)

σ(∆̂g,t)
→d N(0, 1), (A.37)

as required for part (a).

It remains to prove (b) and the consistency of σ̂2(∆̂g,t). From before,

∆̂i,g,t = ∆g,t + υi,t − (λiβi + αi)
′e0∗

r,t + β′
iv

∗
i,t + ε∗i,t + Op(N−1/2), (A.38)

1
|Ig| ∑

i∈Ig

∆̂i,g,t = ∆g,t +
1

|Ig| ∑
i∈Ig

[υi,t − (λiβi + αi)
′e0∗

r,t + β′
iv

∗
i,t + ε∗i,t] + Op(N−1/2). (A.39)

It follows that if we let zi,t = υi,t − (λiβi + αi)
′e0∗

r,t + β′
iv

∗
i,t + ε∗i,t, then

∆̂i,g,t −
1

|Ig| ∑
j∈Ig

∆̂j,g,t = zi,t −
1

|Ig| ∑
j∈Ig

zj,t + Op(N−1/2). (A.40)

Hence, since zi,t is again independent across i, by a law of large numbers for independent

variables,

σ̂2(∆̂g,t) =
1

|Ig| − 1 ∑
i∈Ig

∆̂i,g,t −
1

|Ig| ∑
j∈Ig

∆̂j,g,t

2

=
1

|Ig| − 1 ∑
i∈Ig

zi,t −
1

|Ig| ∑
j∈Ig

zj,t

2

+ Op(N−1/2) →p σ2(∆̂g,t) (A.41)

as N → ∞ (see Pesaran, 2006, page 985, for a similar argument). This establishes part (b) and

hence the proof of the theorem is complete.

2 Discussion of some of the assumptions

The results reported in the main paper assume that the covariates admits to a common factor

representation, which is not needed in pricipal components-based studies such as that of
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Chan and Kwok (2022). In this section, we show that the direct effect is estimable even if

this assumption fails, although in that case we can no longer identify the overall and indirect

ATTs.

Our starting point here is Brown et al. (2022), who consider the same CCE approach as

in Pesaran (2006) but under a different set of assumptions. In particular, instead of requiring

that xi,t has factor structure, they assume that ft satisfies

ft = B′Ψt (B.42)

where Ψt = E(zi,t) is constant in i and B is an arbitrary (m+ 1)× r matrix of constants. Unlike

the factors-in-covariates condition, (B.42) is not testable. However, if it holds, f̂t can be used

to estimate an arbitrary number of factors. In order to illustrate this last point, note that if

(B.42) holds for the untreated potential outcomes,

yi,t(∞) = β′
ixi,t(∞) + α′

ift + ϵi,t

= β′
ixi,t(∞) + a′iE(zi,t|gi = ∞) + ϵi,t

= β′
ixi,t(∞) + a′i f̂t + a′i[E(zi,t|gi = ∞)− f̂t] + ϵi,t (B.43)

where ai = Bαi and E(zi,t|gi = ∞) − f̂t is negligible, as zt →p E(zi,t) as N → ∞ under

standard regulatory conditions.

The main advantage of (B.42) is that it leaves the covariates essentially unrestricted. How-

ever, because we no longer have a model for the untreated potential covariates, we cannot

estimate xi,t(∞) in step 3 of the counterfactual estimation procedure. This has two implica-

tions; (i) we are unable to identify the effect of the treatment on xi,t, and (ii) we have to use

xi,t as opposed to x̂i,t(∞) when computing ŷi,t(∞) in step 4. As a result, similarly to Chan

and Kwok (2022), we can only identify the direct ATT. Hence, while we can relax factors-in-

covariates condition, this has a price in terms of the estimable ATTs.
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