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1— Introduction

Difference-in-differences estimators are one of the most popular causal inference tools for esti-

mating the dynamic effects of a binary treatment in linear panel data models. In many empirical

settings, treatment is assigned non-randomly based on trends in economic variables, and the

parallel trends assumption required by difference-in-differences is not plausible. For example, in

urban economics, place-based policies target places with worsening labor markets (Neumark and

Simpson, 2015), new apartments are built in appreciating neighborhoods (Asquith et al., 2021; Pen-

nington, 2021), and firms opening new stores in growing economies (Basker, 2005; Neumark et al.,

2008). Estimation of treatment effects in this setting is confounded by the pre-existing economic

trends. In many settings, though, it is reasonable to assume that the causes of these trends are due

to larger economic forces and not location-specific shocks. Continuing our examples, the national

decline of manufacturing caused targeted manufacturing hubs to be declining, consumer trends

for walkable neighborhoods cause certain neighborhoods to become increasingly demanded, and

national industry growth rates impact counties differentially.

A recent growing literature models these kind of parallel trends deviations using an interactive

fixed effects where there are common national shocks, but the exposure to the shock vary across

locations. While interactive fixed effects relax the parallel trends assumptions relied on by

difference-in-differences, the current literature requires long panels to estimate effects. Requiring

long panels for estimation is often impractical because of (i) lack of data for many years of

outcomes, (ii) strong assumptions like serially uncorrelated outcomes, or (iii) the presence of

structural breaks, e.g. recessions or structural changes to the macroeconomy, rendering previous

time periods uninformative about the current economy. This paper proposes a treatment effect

estimator under the more general interactive fixed effect model that is robust to certain violations

of parallel trends while remaining consistent in short panels and under heterogeneous treatment

effects.

We model untreated potential outcomes, yit(∞), as an interactive fixed effect model

yit(∞) = f ′
tγi + uit, (1)
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where Ft is a p × 1 vector of unobservable factors, γi is a p × 1 vector of unobservable factor

loadings, and E(uit) = 0 for all (i, t).1 We can view, as we did in the above examples, the factors

Ft as macroeconomic shocks with factor loadings γi denoting a unit’s exposure to the shocks.

Another possibility lets the γi represent time-invariant characteristics with a marginal effect on

the outcome Ft that changes over time.
2
Note that this model nests the standard two-way error

model whenF ′
t = (λt, 1) and γ

′
i = (1, µi); that is, F

′
tγi = λt+µi. The interactive structure allows

for more general patterns of unobserved heterogeneity. Importantly, we allow for treatment to be

correlated with a unit’s exposure to macroeconomic shocks via their factor loadings γi.

For a concrete example, our empirical application focuses on estimating the effect of Walmart

store openings on county-level employment. Estimation of a standard two-way fixed effect event-

study model suggests that Walmart opened stores in counties that had higher retail employment

growth prior to the opening (e.g. Neumark et al. (2008)). In Figure 2, we present an event-study

graph and overlay a line of best fit on the pre-treatment estimates. That the line is positive sloping

and the estimates are different from zero at the 5% level suggests that estimated positive impacts

are due to pre-existing trends rather than the effect of Walmart per se. However, there seems to be

a discrete jump when the Walmart opened. The goal then is to remove these pre-existing trends

to isolate the treatment effect. It is plausible to assume that during their period of mass expansion,

Walmart selected appealing locations based on their local demographic background and national

economic trends, while ignoring transitory local economic shocks. Our framework allows this

type of selection mechanism and effectively ‘controls’ for these pre-existing trends in outcome.

Our main treatment effect identification result only requires consistent estimates of the column

space of Ft. Using the estimated factors, we compute a matrix that projects the pre-treatment

outcomes onto the estimated post-treatment factors, imputing the untreated potential outcome

for treated units. Averaging over the difference between the post-treatment observed outcomes

and the estimated untreated potential outcomes gives a consistent estimator of average treatment

effects. In specifications that include the two-way error model, we show how to explicitly remove

1. We follow Callaway and Sant’Anna (2021) and define the state of not receiving treatment in the sample as ‘∞’.

This is useful in settings with staggered treatment timing where potential outcomes are denoted by the period where

a unit start treatments.

2. Ahn et al. (2013) suggest a wage equation where γi are unobserved worker characteristics of an individual

and Ft are their time-varying prices or returns to those characteristics. See Bai (2009) for a collection of economic

examples that justify the inclusion of a factor structure.
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the additive fixed effects with a double-demeaning transformation that maintains the common

factor structure across treated groups and the never-treated group.

There are twomajor benefits of our general identification argument. First, consistent estimation

of Ft is possible through a variety of approaches, such as quasi-differencing (Ahn et al., 2013;

Callaway and Karami, 2023), common correlated effects (Pesaran, 2006; Westerlund et al., 2019), or

principal components (Bai, 2009; Fan et al., 2016; Westerlund, 2020; Chan and Kwok, 2022). These

techniques allow the user to tailor their factor estimator to the specific data and problem under

consideration, including how many pre-treatment time periods are available. Our identification

result provides a recipe for using any consistent estimator of the factors to estimate treatment

effects, opening up the large factor-model literature for causal inference methods. Second, our

imputation method allows researchers to graph the estimated counterfactual untreated potential

outcomes and the observed outcomes for treated units as a visual check for the parallel trends

assumption, similar to a synthetic control plot.

We derive asymptotic properties of an imputation estimator with factor proxies that contain

the true unobserved factors in their column space. The resulting estimator takes the form of

a generalized method of moments (GMM) estimator, which allows estimation and inference

via common statistical software. It is also consistent when the number of pre-treatment time

periods is small.
3
One advantage of this estimator is that we can form statistical tests for the

consistency of the two-way fixed effects (TWFE) estimator. These tests are practically useful since

difference-in-differences is simple to implement.

Relation to Literature

Recent work has proposed ‘imputation’ estimators for treatment effects using non-treated and

pre-treatment observations to ‘impute’ the untreated potential outcomes for the post-treatment

observations (e.g. Borusyak et al., Forthcoming; Gardner, 2021; Wooldridge, 2021). However,

these approaches only allow for level fixed effects and preclude interactions like in equation

(1). Borusyak et al. (Forthcoming) allow a structure similar to equation (1) but requires the the

factors Ft be observed. We generalize these techniques by proposing an estimator that imputes

the untreated potential outcomes under the more general (1) with unobserved interactive effects.

3. Deriving the asymptotic distribution of treatment effects using large-T factor estimators is left for future work.
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Current estimators that allow for selection based on a factor model either require (i) the

number of time periods available is large, e.g. synthetic control (Abadie, 2021), factor-model

imputation (Xu, 2017; Gobillon and Magnac, 2016), and the matrix completion method (Athey

et al., 2021; Fernández-Val et al., 2021); or (ii) that an individual’s error term uit is uncorrelated

over time (Imbens et al., 2021).
4
Both of these restrictions are non-realistic in many applied

microeconomic data sets where the number of time periods is much smaller than the number

of units and serial correlation of shocks is expected. Further, large-T estimators often place

restrictions on the dynamic heterogeneity of treatment. Our method requires neither large T nor

error term restrictions, but can still accommodate large-T and unit-heterogeneous estimation

strategies.

Our work contributes to an emerging literature on adjusting for parallel trends violations in

short panels. Freyaldenhoven et al. (2019) propose a similar instrumental variable type estimator

in the presence of time-varying confounders. Their results rely importantly on homogeneous

treatment effects. Their simulations show that heterogeneous treatment effects bias their estimates

severely, while our estimator allows for arbitrary time heterogeneity. The most similar paper to

our current approach is Callaway and Karami (2023), who also allow for heterogeneous effects

in short panels. They prove identification using a similar strategy to QLD and instrumental

variables and derive asymptotic normality assuming the number of time periods is fixed. They

require time-invariant instruments whose effects on the outcome are constant over time. Their

instruments are valid for the QLD estimator in our application, but we also allow for time-varying

covariates as instruments. They do not provide a general identification scheme like ours and

so their results do not readily extend to other estimators like principal components or common

correlated effects.

The rest of the paper is divided into the following sections: Section 2 describes the theory

behind our methods and presents identification results of the group-specific dynamic treatment

effect parameters. Section 3 provides the main asymptotic theory for a particular QLD estimator.

We also discuss practical concerns for practitioners. We include a small Monte Carlo experiment

in Section 4 to examine the finite-sample performance of our estimator. Finally, Section 5 contains

4. Imbens et al. (2021) allow correlation within the post- and pre-treatment sets of the idiosyncratic errors, but

assume independence between the two sets. This assumption is still strong in a static modeling context.
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our application and Section 6 leaves with some concluding remarks.

2— Model and Identification

Weassume a panel data set with units i = 1, . . . , N and periods t = 1, . . . , T . Treatment turns on in

different periods for different units; we denote these groups by the period they start treatment. For

each unit, we define Gi to be unit i’s group with possible values {g1, . . . , gG} ≡ G ⊆ {2, . . . , T}.

We follow Callaway and Sant’Anna (2021) and denote Gi = ∞ for units that never receive

treatment. We assume that 0 < P (Gi = g) < 1 for all g ∈ G ∪ {∞}, so that the number of

individuals in each group and the never-treated group grow with N . Treated potential outcomes

are a function of group-timing, which we denote yit(g). For treatment indicators, we define

the vector of treatment statuses di = (di1, ..., diT ) where dit = 1(t ≥ Gi) and the indicator

Dig = 1(Gi = g) if unit i is a member of group g. Let T0 = minj{gj}− 1 be the last period before

the earliest treatment adoption.

Following Callaway and Sant’Anna (2021), we aim to estimate group-time average treatment

effects on the treated:

ATT(g, t) = τgt ≡ E(yit(g) | Gi = g)− E(yit(∞) | Gi = g) (2)

These quantities represent the average effect of treatment at time t for units that start treatment

in period g for t ≥ g. It is trivial to estimate other averages as well in our framework, including

averaging over all post-treatment observations to estimate an overall ATT, and averaging over

(i, t) where t − Gi = ℓ to estimate event-study estimands ATT
ℓ
’s. We discuss these and other

extensions from Callaway and Sant’Anna (2021) in Section 3.

We now state our main identifying assumptions.

Assumption 1 (Sampling). The random vectors {(di,γi,ui)} are randomly sampled from an

infinite population and has finite moments up to the fourth order. ■

Assumption 2 (Untreated potential outcomes). The untreated potential outcomes take the

form

yit(∞) = F ′
tγi + uit
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where E(uit | di,γi) = 0 for t = 1, ..., T . ■

Assumption 3 (No anticipation). For all units i and groups g ∈ G, yit = yit(∞) for t < g. ■

Assumption 2 imposes a factor-model for the untreated potential outcomes. The Online

Appendix discusses the inclusion of covariates and the subsequent relaxation of assumption 2. We

allow for heterogeneous and dynamic treatment effects of any form, i.e. yit(g) = τigt+yit(∞). We

also allow arbitrary serial correlation among the idiosyncratic errors.
5
We assume the common

factors Ft are nonrandom parameters and the number of factors p is fixed in the asymptotic

analysis.

Assumption 2 is more general than the standard difference-in-differences parallel trend as-

sumption since we include the factor structure in our potential outcome model. In particular, it

assumes that the error term is uncorrelated with treatment status after controlling for the factor

loadings. Treatment can still be correlated with contemporaneous shocks so long as the shocks,

but not necessarily the exposure to them, are ‘common’ across the sample. For example, our

identification strategy is valid if workers select into a job training program based on their exposure

(or adaptability) to macroeconomic productivity shocks.

The two-way error model cannot generally accommodate differential exposure.
6
In the more

general factor model and Assumption 2, changes in untreated potential outcomes are given by

E(yit(∞)− yit−1(∞) | Gi = g) = λt + (Ft − Ft−1)
′ E(γi | Gi = g)

Unless either (i) the factor loadings have the samemean across treatment groups, E(γi | Gi = g) =

E(γi), or (ii) the factors are time-invariant, then the standard parallel trends assumption that the

group g and the never-treated group follow common trends would not hold. If either of the two

cases hold for all g and t, the two-way error model is correctly specified.
7
However, these are

knives edge cases which are not the focus of the paper. Our Assumption 2 allows for the factor

loadings to be correlated with treatment timing and opens up treatment effect estimation for a

much broader set of empirical questions.

5. This condition may need to be strengthened for inference when T → ∞.

6. The following derivation is also shown in Callaway and Karami (2023), but we are repeating it here for exposition.

7. We explicitly prove this result later.
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The key econometric challenge lies in that we do not observe yit(∞) whenever dit = 1. Our

goal is to consistently estimate E(yit(∞) | Gi = g) under equation (1) to consistently estimate

group-time average treatment effects. Gardner (2021), Wooldridge (2021), and Borusyak et al.

(Forthcoming) implicitly rely on this insight in studying the two-way error model.

Prior attempts at estimating average treatment effects in a factor-model setting focus on finding

conditions that allow for estimation of γi and Ft jointly as in Gobillon and Magnac (2016) and Xu

(2017), or a generalized version of a factor model as in Arkhangelsky et al. (2021). These techniques

require the number of pre-treatment periods to grow to infinity and often place restrictions on

both the dynamics of the treatment effects’ distribution and the serial dependence among the

idiosyncratic errors. Instead, we pursue identification noting that

E(yit(∞) | Gi = g) = F ′
t E(γi | Gi = g) (3)

Therefore, we only need to estimate the average of the factor loadings among a treatment group,

which we can always do even with a small number of post-treatment time periods. We can then

accommodate either a large or small number of pre-treatment periods and allow for estimation

using a broad range of known strategies.

2.1. ATT(g, t) Identification

We begin by describing the intuition behind our identification result. Consider a unit subject to

treatment at time g. Define yi,t<g and yi,t≥g as respectively the first (g − 1) and last (T − g + 1)

outcomes for unit i. DefineF to be the matrix of factor shocks with rows given byFt. We similarly

define Ft<g and Ft≥g as the first and last rows of matrix F . Equation (3) implies

E(yi,t<g(∞) |Gi = g) = Ft<g E(γi | Gi = g) (4)

If the factors were observed, we could consistently estimate the mean values of the p-vector of

average factor loadings for treated groupGi = g. More formally, if Rank(Ft<g) = p, the coefficient

from the population regression of E(yi,t<g(∞) | Gi = g) on Ft<g is E(γi | Gi = g). Equation (3)

also gives us

E(yi,t≥g(∞) |Gi = g) = Ft≥g E(γi | Gi = g) (5)
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for the post-treated outcomes. Because we assume F is known (for now), we can predict

E(yi,t | Gi = g) for t ≥ g by multiplying Ft by the OLS estimate from the prior regression.

We then obtain E(yit(∞) | Gi = g) for the post-treatment outcomes, which we can subtract from

yit and average over the respective sample to obtain ATT(g, t).

We now define a useful matrix function for a more formal derivation of our main result. Given

matricesX1 andX0 that are respectively n× k andm× k, suppose Rank(X0) = k. We define

the imputation matrix

P (X1,X0) ≡ X1(X
′
0X0)

−1X ′
0 (6)

This matrix takes a similar form to a projection matrix but “imputes" the fitted values from

regressing onX0 onto a different matrixX1. Gardner (2021) and Borusyak et al. (Forthcoming)

implicitly uses the imputation matrix for an additive error model whereX1 is the matrix of unit

and time fixed effects and X0 is X1 with rows of zero whenever dit = 1. When applying this

matrix of factors to our outcomes, the post-treatment factors are multiplied by the factor loadings

from the pre-treatment observations. In particular, we impute yit(∞) by P (F ′
t ,Ft<g)yi,t<g for

Gi = g, similar to the bridge function identification scheme in Imbens et al. (2021). However,

because we only need a conditional mean assumption, we can allow arbitrary correlation between

the idiosyncratic errors.

The next theorem provides our main identification result:

Theorem 1. Suppose F is known and Rank(Ft≤T0) = p. Under Assumptions 1, 2, and 3 for all

g ∈ G,

ATT(g, t) = E(yit − P (F ′
t ,Ft<g)yi,t<g | Gi = g) (7)

for t ≥ g.

Moreover, let F ∗
be a full rank T ×m matrix where m < T0 and F ∈ col(F ∗), the column

space of F ∗
. Then the imputation matrix is invariant to F ∗

P (F ∗′
t ,F ∗

t<g)Ft<gγi = F ′
tγi (8)

■

All proofs are contained in the Online Appendix. Theorem 1 shows that we can identify the
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ATTs if we know the factor matrix. The second part of the theorem suggests that any rotation of

the true factor matrix, F , can be used in the imputation matrix. This is important because it is

well understood that Ft and γi are not separately identified (Ahn et al., 2013; Xu, 2017). All of the

estimators discussed so far can at best approximate the column space of the factors because both

Ft and γi are unobserved. The second part of the theorem shows that our identification scheme

allows for this class of estimators.

Theorem 1 shows we can apply these conclusions to any interactive fixed effects estimator that

achieves consistency by asymptotically spanning the factor space. Examples include the principal

components estimator of Bai (2009)
8
, the common correlated effects estimator of Pesaran (2006)

9
,

the differencing techniques of Ahn et al. (2001, 2013), Callaway and Karami (2023) and Brown

(2023), or the internally generated instruments of Juodis and Sarafidis (2022) or Cui et al. (2021).

As long as the factors are consistently estimated using the control sample, dynamic ATTs are

identified as in Theorem 1, regardless of the normalization used for estimation. In fact, we do not

even require the factors to be full rank, though this assumption is typically made in practice.

To present a general framework for the estimation of the factors, we formally present the

identifying assumptions needed for factor space estimators:

Assumption 4. There exists a q × 1 vector of parameters θ and a T ×m function F (θ) such

that the following conditions hold:

(i) For some full-rank matrixA, F (θ)A = F where Rank(F (θ)) = m < T0

(ii) There is a s× 1 vector of moment functions gi∞(θ) such that

E(gi∞(θ) | Gi = ∞) = 0 (9)

(iii) LetD∞ = E(∇θgi∞(θ) | Gi = ∞). Then Rank(D∞) = q.

(iv) E(gi∞(θ)gi∞(θ)′ | Gi = ∞) is positive definite.

8. The PC estimator in Bai (2009) requires T → ∞ for asymptotic normality. Westerlund (2020) provides conditions

under which the PC estimator is fixed-T consistent. Regardless, the identification strategy still holds.

9. The CCE factor proxies do not converge to a full rank matrix. However, Westerlund et al. (2019) show that the

residual maker matrix is consistent for the space orthogonal to the factors due to an implicit normalization. See

Brown et al. (2023) for a proof of asymptotic normality in our setting under typical CCE assumptions.
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Part (i) implies that the estimated factors can be reduced to a finite dimension of estimable

parameters. The matrixA is the full rank linear rotation that turns F (θ) into F . For the example

estimators expressed above, F (θ) asymptotically spans the unknown factors, F . Parts (ii)-(iv)

imply the parameters θ are identified and consistently estimable. The parameters θ themselves

are often the result of an underlying normalization like in Bai (2009), Ahn et al. (2013), Juodis

and Sarafidis (2022), and Callaway and Karami (2023). Sometimes they are population moments

estimated by cross-sectional averages like in Westerlund et al. (2019) and Brown et al. (2023).

Assumption 4 is written with fixed-T estimation and inference in mind. As mentioned before,

accommodating general principal components estimation requires additional restrictions, as well

as a large time series in the pre-treatment periods. However, the general identification result is the

same and our estimator is still valid for estimating dynamic effects in the post-treatment period.

Further research should explicitly derive the large-T properties of our estimator using principal

components in the first stage.

Remark 1. A leading example of a set of moment equations for factor-space estimation is

the Quasi-long Differencing (QLD) estimator of Ahn et al. (2013) (ALS). ALS propose a QLD

transformation given by

H(υ) = (IT−p,Υ) (10)

whereΥ is a (T − p)× p matrix of unrestricted parameters and υ = vec(Υ). They normalize the

factors as

F (υ) =

 Υ

−Ip

 (11)

so that H(υ)Fγi = 0 by construction. We modify their proposed moment conditions to use just

the never-treated group:

E(gi∞(υ) | Di∞ = 1) = E(wi ⊗H(υ)yi | Di∞ = 1) = 0 (12)

wherewi is a vector of instruments that are exogenous with respect to the idiosyncratic error in

Assumption 2 but correlated with γi. We discuss the choice of instruments wi in more practical

terms in section 5.
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While both approaches are valid in the first stage of our setting, we use the Ahn et al. (2013)

estimator because it is more general than Callaway and Karami (2023). For one, they allow for a

larger set of instruments. One identification strategy proposed by Callaway and Karami (2023)

requires time-invariant covariates whose effects on yit are independent of time, meaning the

researcher must decide which of the time-invariant observables have constant effects on the

outcome. Ahn et al. (2013) can allow for arbitrary time effects on covariates while still using those

covariates as instruments. Ahn et al. (2013) also give a road map to estimation based on weakly

exogenous covariates that allows for dynamic modeling. This aspect of the estimator is left for

future research. ■

2.2. Two-Way Error Model

We now demonstrate how to explicitly nest the standard two-way error model. While this structure

is a special case of the factor model studied above, we consider the special case for two main

reasons. First, eliminating the additive effects saves degrees of freedom to estimate the factor

models; it may also provide efficiency by reducing the burden on first-stage factor estimators.

Second, a thorough study of the additive model will provide insight into the link between TWFE

estimation and more complicated and computationally involved factor model estimation. It will

also allow us to show when TWFE estimation is consistent in the presence of interactive fixed

effects.

We first note that care must be taken when eliminating additive effects so that the overall

factor structure is preserved. The methods in Borusyak et al. (Forthcoming), Gardner (2021), and

Wooldridge (2021) that estimate the additive effects using the untreated sample will not maintain

a common factor structure. For example, consider the first order conditions from the regression of

(1− dit)yit on unit and time effects. The estimators for the unit effect of a unit treated at time g

and a never-treated unit respectively satisfy

g−1∑
t=1

(yit − λ̂t − µ̂i) = 0 (13)

T∑
t=1

(yit − λ̂t − µ̂i) = 0 (14)
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The control sample will remove more time averages than in every treated sample, meaning the

factors are demeaned using different subsamples. As such, the transformed factors are not equal

across groups and so we cannot then use the control sample to estimate the factors for the treated

samples.

We first define the following averages for the purpose of removing the additive effects:

y∞,t =
1

N∞

N∑
i=1

Di∞yit (15)

yi,t≤T0
=

1

T0

T0∑
t=1

yit (16)

y∞,t<T0
=

1

N∞T0

N∑
i=1

T0∑
t=1

Di∞yit (17)

where y∞,t is the cross-sectional averages of the never-treated units for period t, yi,t≤T0
is the time-

averages of unit i before any group is treated, and y∞,t<T0
is the total average of the never-treated

units before any group is treated.

We then perform all estimation on the residuals ỹit ≡ yit−y∞,t−yi,t<T0
+y∞,t<T0

. These resid-

uals are reminiscent of the usual TWFE residuals, except we carefully select this transformation to

accomplish two things. First, this transformation leaves the treatment dummy variables unaffected

to prevent problems with negative weighting when aggregating heterogeneous treatment effects

(Goodman-Bacon, 2021; Borusyak et al., Forthcoming). Second, it preserves a common factor

structure for all units and time periods
10
. The TWFE imputation estimator of Gardner (2021),

Wooldridge (2021), and Borusyak et al. (Forthcoming) would not share this property because they

estimate µi and λt based on the full sample dit = 0, while we use a specific subsample.

This result is summarized in the following lemma:

Lemma 1. E(ỹit | Gi = g) = E
(
ditτit + (Ft − F t<T0)

′(γi − γ∞) | Gi = g
)
for t = 1, ..., T and

g ∈ G ∪{∞} where F t<T0 is the average of Ft in the pre-treatment periods and γ∞ is the average

of γi among the control units. ■

Lemma 1 demonstrates how to explicitly nest the two-way error model model while allowing

10. Such a transformation should not be used when considering the common correlated effects estimator because it

would violate the CCE rank condition. See Brown et al. (2023).
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for a general common factor structure. Since we are not interested in inference on the factors

themselves, this form will suffice for the imputation process. The transformed outcomes take the

form

ỹit = ditτit + (Ft − F t<T0)
′(γi − γ∞) + ũit. (18)

For ease of exposition, we rewrite the above equation as:

ỹit = ditτit + F̃ ′
t γ̃i + ũit. (19)

Lemma 1 has the added benefit of showing us when the ATTs are identified by our TWFE

transformation alone.

Corollary 1. Under Assumptions 1-3, ATT(g, t) is identified by the fixed effects imputation

transformation if E(γi | Gi = g) = E(γi) for all g ∈ G ∪ {∞}. ■

This result is an immediate consequence of Assumptions 1 – 3 as E(γj | Gi = g) = E(γi) for

j ̸= i under random sampling. Corollary 1 tells us that TWFE imputation is sufficient to estimate

the ATTs, even when the factor structure exists, so long as the average factor loadings do not

differ systemically with treatment status. Asymptotic normality of our imputation procedure

under a two-way error model is studied in the Online Appendix. We also provide simple tests for

mean independence of the factor loadings in Remark 5, i.e. consistency of the TWFE estimator.

However, if the researcher believes a TWFE estimator is sufficient, they should use one of the

other techniques mentioned above. Our method sacrifices potential efficiency by not using all

observations to eliminate the additive effects in order to allow for additional interactive effects.

3— Estimation and Inference

This section considers estimation of the group-time average treatment effects. A major benefit of

our approach is the simplicity of inference while allowing for a large number of possible estimation

techniques in the first stage. Our moment conditions lead to a simple GMM estimator for which

inference is standard and can be computed via routine packages in standard statistical software.

Further, we can use the moment conditions to test the fundamental features of the model.
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3.1. Asymptotic Normality

Equations (7) and (9) provide us with the necessary moment conditions to estimate the ATTs. We

collect them here in their unconditional form:

E
(

Di∞

P(Di∞ = 1)
gi∞(θ)

)
= 0

E(gigG(θ, τgG)) = E
(

DigG

P(DigG = 1)
(yi,t≥gG − P (Ft≥gG(θ),Ft<gG(θ))yi,t<gG − τgG)

)
= 0

.

.

.

E(gi1(θ, τg1)) = E
(

Dig1

P(Dig1 = 1)
(yi,t≥g1 − P (Ft≥g1(θ),Ft<g1(θ))yi,t<g1 − τg1)

)
= 0

where τg = (τgg, ..., τgT )
′
is the vector of post-treatment treatment effects. We stack these over g

as τ = (τ ′
g1
, ..., τ ′

gG
)′. The first set of moment conditions identify the factor space by Assumption 4

and the remaining moments identify the τgt via our imputation method.
11
Implementation requires

replacing P (Dig = 1) with its sample counterpart Ng/N . This setting can also accommodate

cases as in Hahn et al. (2018) where the factor structure is estimated nonparametrically in the first

stage but the parametric estimator in the second stage is still Op(N
−1/2). We leave this case for

future study.

We need one final assumption to implement the asymptotically efficient GMM estimator:

Assumption 5. E(gig(θ, τg)gig(θ, τg)
′) is positive definite for each g ∈ G. ■

We collect themoment functions into the vector gi(θ, τ ) = (gi∞(θ)′, gigG(θ, τgG)
′, ..., gig1(θ, τg1)

′)′.

In an abuse of notation, we assume gi∞ is the moment function from equation (9) but scaled by

Di∞/P (Di∞ = 1). We define ∆ = E(gi(θ, τ )gi(θ, τ )
′) which is positive definite by Assump-

tions 4 and 5. Then our GMM estimator (θ̂′, τ̂ ′)′ solves

min
θ,τ

(
N∑
i=1

gi(θ, τ )

)′

∆̂−1

(
N∑
i=1

gi(θ, τ )

)
(20)

where ∆̂
p→∆ uses an initial consistent estimator of (θ′, τ ′)′.

11. We implicitly assume P(Digh = 1) is strictly between 0 and 1 for every gh ∈ G ∪ {∞}.
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Theorem 2. Under Assumptions 1-5,

√
N
(
(θ̂′, τ̂ ′)′ − (θ′, τ ′)′

)
is jointly asymptotically normal

as N → ∞ and

√
N(θ̂ − θ)

d→N
(
0,
(
D′

∞∆−1
∞ D∞

)−1
)

√
N(τ̂gG − τgG)

d→N
(
0,∆gG +DgG

(
D′

∞∆−1
∞ D∞

)−1
D′

gG

)
.
.
.

√
N(τ̂g1 − τg1)

d→N
(
0,∆g1 +Dg1

(
D′

∞∆−1
∞ D∞

)−1
D′

g1

)
where Dg is the gradient of group g’s moment function with respect to θ and ∆g is the variance

of group g’s moment function. Further, the asymptotic covariance between

√
N(τ̂gh − τgh) and

√
N(τ̂gk − τgk) is given by Dgh(D

′
∞∆−1

∞ D∞)−1D′
gk
. ■

Valid inference is easy to obtain because we use a GMM framework. Analytic standard errors

are computed and reported by most routine statistical packages implementing GMM estimation.

Because we have proved asymptotic normality, one can also use the usual nonparametric bootstrap.

We derive an asymptotically linear representation of the ATT estimates in the Appendix that also

allow for the multiplier bootstrap as in Callaway and Karami (2023).

The asymptotic distribution of

√
N(τ̂g − τg) generally depends on the estimation of θ in the

first stage by the term Dg(D
′
∞∆−1

∞ D∞)−1D′
g . We can see directly from Theorem 2 that a smaller

Avar(
√
N(θ̂−θ)) leads to a smaller Avar(

√
N(τ̂g−τg)) (in the matrix sense), strictly so whenDg

has full rank. This result also suggests that more efficient estimation of the factors is an important

avenue of future work and demonstrates why our general identification result is so powerful: we

can use different estimators of the factors if we believe we can achieve substantial efficiency gains.

Estimation of τg is not dependent on the first stage estimation of θ whenDg = 0. A sufficient

condition for this equality occurs when the transformed factor loadings for group g center about

zero. The fixed-T common correlated effects analysis of Westerlund et al. (2019) implies such a

condition. We may also think this condition holds in certain applications where the factor model

is relevant. For example, suppose γi is exposure to an information shock ft such that γi ∈ [0, 1]

with probability one. If non-institutional investors of a given asset do not have access to privately

held limited information, we would expect γi ≈ 0 for units in said group. When the gradient
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Dg = 0 for a given g, the asymptotic variance of

√
N(τ̂g − τg) is just∆g . This quantity is simple

to estimate via a nonparametric variance estimator. Let

∆̂g =
1

Ng − 1

N∑
i=1

Dig

(
∆̂ig − τ̂gG

)(
∆̂ig − τ̂gG

)′
(21)

where ∆̂ig = yi,t≥g − P (Ft≥g(θ̂),Ft<g(θ̂))yi,t<g. This estimator is sufficient to generate valid

standard errors wheneverDg = 0.

Theorem 3. Under Assumptions 1-5, ∆̂−1
g

p→∆−1
g .

3.2. Extensions

We conclude this section with a few extensions of our estimator to highlight the flexibility of our

approach.

Remark 2 (Limited Anticipation). We can relax the limited anticipation assumption by simply

redefining the last pre-treatment period as qg − 1 and incorporate the additional g − qg periods

into the moment conditions, so long as there are still enough pre-treatment periods to construct

the imputation matrix. Then τg is a T − qg +1 vector that makes treatment anticipation a testable

hypothesis:

H0 : τg,qg = ... = τg,g−1 = 0 (22)

■

Remark 3 (Other Aggregate Treatment Effects). Our estimation method can handle other aggre-

gations of yit − ŷit(∞). For example, one could aggregate over all post-treatment (i, t) to estimate

an overall ATT or over event-time indicators to estimate aggregate event-study estimates.
12
Re-

searchers can perform heterogeneity analyses by aggregating for units with different values of

Xi like gender, race, or age to estimate a conditional ATT. All one needs to do to estimate such

aggregate effects is to correctly specify the unconditional treatment effect moment conditions. If

there are a priori restrictions on treatment effects as in Borusyak et al. (Forthcoming), these can

be imposed on the moment conditions as well.

12. Alternatively, we allow for aggregation of ATT(g, t) estimates as in Callaway and Sant’Anna (2021) by deriving

the influence function in the Online Appendix.
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We can also derive pre-treatment “placebo" effects by estimating a coefficient on the pre-

treatment time periods. The imputation matrix that carries out this estimation is the usual

projection matrix P (Ft≤g,Ft≤g). Under the no anticipation assumption,

E((Ig − P (Ft≤g,Ft≤g))yi,t≤g | Gi = g) = 0 (23)

so that the properly standardized vector of pre-treatment residuals is asymptotically normal. ■

Remark 4 (Plotting Estimates). The proposed estimator can be used to produce estimates for

yit(∞) in all periods for the treated observations:

ŷit(∞) = P (Ft,Ft<g)yi,t<g + y∞,t + yi,t<T0
− y∞,t<T0

(24)

where the first term on the right-hand side imputes ŷit(∞) and the last three terms in the sum

‘undo’ the within-transformation
13
. In the pre-treatment periods, our estimates ŷit(∞) should

be approximately equal to the observed yit under our assumptions. Similar to synthetic control

estimators, comparing the imputed values to the true value can validate the ‘fit’ of our model.

However, since we have many treated units, doing so unit by unit is not practical. There are two

complementary ways to aggregate treated units that will prove useful.

First, one can aggregate over a group and plot the average of yit and the average of ŷit(∞)

separately for each group g ∈ G. This will create a set of ‘synthetic-control’ like plots. To produce

an ‘overall’ plot, the observed outcome yit and the estimated untreated potential outcome ŷit(∞)

should be ‘recentered’ to event-time, i.e. reindex time to e = t−Gi, so that treatment is centered

at event-time 0. Then yie and ŷie(∞) can be aggregated for each value of event-time e. We produce

such a plot in our empirical example.

Remark 5 (TWFE Specification Testing). This paper is motivated by the fact that the two-way

error model’s generality is suspicious in practice. Therefore, we think a test of the two-way error

structure versus a more complicated interactive effects model is of practical importance. Ahn et al.

(2013) discuss consistent estimation of p. Their tests have a new interpretation under this null

hypothesis when testing for p on the residuals ỹit.

13. Leave this part out if you do not remove the additive effects by hand.
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Theorem 4. If Assumption 1 and 2 hold with F ′
tγi = 0 almost surely, then p = 0. ■

If the null hypothesis is true, the more computationally burdensome QLD procedure is un-

necessary for estimating the ATTs.
14
Even if the two-way error model is unrepresentative of the

factor structure, Corollary 1 shows that mean independence of the factor loadings with respect to

treatment timing is sufficient for consistency of TWFE. See the Online Appendix for an additional

test of the equality of the factor loadings’ conditional means. ■

4— Simulations

We present a brief simulation study to compare our estimator to different TWFE specifications. We

specifically study the quasi-differencing factor estimation approach of Ahn et al. (2013) in the first

stage because it is used in our empirical example. See Brown et al. (2023) for simulation evidence

for common correlated effects as the first stage estimator. We consider the setting where T = 8

and treatment turns on starting in period 6 implying T0 = 5. We draw N = 200 observations,

which is a relatively small number for a nonlinear estimation problem.

We generate untreated potential outcomes following equation (1). We consider the setting

with one factor that we generate as a time-trend ft = t.15 We generate the time fixed effects

as ζt = 0.75 ∗ ζt−1 + νt where νt ∼ N(0, 1). We generate the unit fixed effects as iid with

µi ∼ N(0, 4) and the factor loadings to be correlated with the unit fixed-effects by drawing from

γi ∼ N(µi, 1). The error term is generated as an AR(1) process with correlation coefficient

0.75 and is uncorrelated with treatment status. We generate individual-level treatment effect

heterogeneity by defining individual treatment effects τiℓ to be τℓ times the unit fixed effect but

then re-scale the individual effects to have mean equal to τ6 = 1, τ7 = 2, and τ8 = 3 and for the

variance of τiℓ to be one. For example, τi6 = (µi + 2)/2.

We generate a covariate wi = γi + ξi where ξi is white-noise measurement error. wi will

be used as a covariate in some TWFE specifications and as our instrument for our factor-model

estimation. In the baseline simulation, we consider the case where ξi ∼ N(0, 1), which creates a

14. Even if TWFE is consistent, it is not necessarily more efficient than our procedure. See Section 4 for example.

15. In this particular case, if the researcher knew that ft took this form, then including unit-specific time-trends

would fix this problem. However, we emphasize that ft is generally not observable. We include this simple form of ft
so that the expected bias of TWFE is easy to compute: t ∗ (E(γi | Di = 1)− E(γi | Di = 0)).
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signal-to-noise ratio for the instrument of 1/2. In a set of simulations, we vary the level of noise

to see how the instrument strength affects estimates. These results will allow us to compare our

methods to those that use noisy measurements of unobserved heterogeneity.

We consider three data-generating processes. First, we consider the true two-way error model

where there are no interactive effects. In this case, the two-way fixed effects estimator should

be unbiased. Second, we generate outcomes with the factor model described above. Treatment

is then assigned completely randomly with probability of treatment at 50% for all units. This

implies that the factor loadings are uncorrelated with treatment status, which Corollary 1 shows

is sufficient for the TWFE imputation procedure to be consistent. Third, we generate treatment

with probability increasing in the factor loading such that parallel trends fail (since treated units

are more exposed to the time-trend in ft). In particular, we form the term

πi = 0.5 +
γi

maxi γi −mini γi
(25)

We normalize this term by the mean of πi so that the unconditional probability of treatment stays

at 50%.

We estimate event-study treatment effects using four estimators. First, we estimate the classical

two-way error model using ordinary least squares (OLS), i.e. the TWFE estimator. Second, we

estimate the two-way error model using the imputation estimator proposed by Borusyak et al.

(Forthcoming) and Gardner (2021).
16
Third, we augment the two-way error model by including a

noisy measure of the factor loadings. This is sometimes done by applied researchers in an attempt

to control for confounders. That is, they model outcomes as

yit = µi + λt + wiβt + uit (26)

where wi is a time-invariant covariate and βt allows for trends to vary based on wi. In the case

where wi = γi, i.e. the factors are observable, this model is correctly specified. However, when

Var(ξi) > 0, i.e. the covariates are noisy measures for the underlying factor loadings, model

(26) will only partially absorb the factor model. We compare this method to our estimator using

16. We use the R package did2s (Butts and Gardner, 2022) for estimation.
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the QLD transformation of Ahn et al. (2013) to estimate the factors.
17

The covariate wi is our

instrument in the first stage to estimate the QLD parameters. See Remark 1.

Results are presented in table 1. Each panel presents results from each of the three data-

generating processes described above. For each estimate, we present the average bias for the

estimate as well as the mean-squared error. For Panel A where the outcomes are generated under

the two-way fixed effect model (i.e. without a factor structure), all estimators are unbiased for

the treatment effects, but the more robust factor imputation pays an efficiency cost with larger

mean-squared error. However, this flips in Panel B where outcomes are generated under a factor

model but with parallel trends holding for the two-way error model. In this case, all estimators

are still unbiased but the factor imputation estimator is the most efficient because it absorbs the

factor-structure that is present in the error term for the two-way error model.

Turning to where parallel trends does not hold in Panel C, we see that only our factor-

imputation estimator is unbiased. This result emphasizes that our estimator is robust for parallel

trend violations coming from differential exposure to macroeconomic factors. The magnitude of

bias present in the two-way error models is growing from τ6 to τ8 due to the factor being a linear

time-trend, implying parallel trend deviations grow worse over time.

It is worth noting that while including wiβt in the model does remove some bias, the estimates

still perform worse than our imputation procedure due to wi being a noisy measure. To highlight

the problems with noisy proxies for factor loadings, figure 1 presents a set of simulation results

where the covariate wi has different amount of noise added in. In particular, we choose different

values of Var(ξi) to have different signal-to-noise measures. The signal-to-noise definition is

signal to noise ratio =
Var(γi)

Var(γi) + Var(ξi)
(27)

For each signal to noise ratio, we estimate the TWFE imputation estimator with covariates and

the factor model imputation estimator. Figure 1 presents the results of estimates for τ8. At one

extreme, where the signal to noise ratio is approximately 0, i.e. ξi is white noise, the estimated

bias for the TWFE imputation estimator is the same as the TWFE imputation estimator that does

not include covariates. At the other extreme, where the signal to noise ratio is approximately 1,

17. We use the Optim.jl package for GMM estimation (Mogensen and Riseth, 2018).
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Table 1—Monte Carlo Simulation

Panel A: Two-way error model.

Bias

(
τ̂6
)

MSE

(
τ̂6
)

Bias

(
τ̂7
)

MSE

(
τ̂7
)

Bias

(
τ̂8
)

MSE

(
τ̂8
)

TWFE 0.00 0.01 -0.00 0.02 0.00 0.02

TWFE Imputation 0.01 0.01 0.00 0.02 0.01 0.02

TWFE Imputation

with Covariates

0.01 0.01 0.00 0.02 0.01 0.02

Factor Imputation -0.00 0.04 -0.01 0.11 -0.01 0.24

Panel B: Factor Model. Parallel Trends Hold

Bias

(
τ̂6
)

MSE

(
τ̂6
)

Bias

(
τ̂7
)

MSE

(
τ̂7
)

Bias

(
τ̂8
)

MSE

(
τ̂8
)

TWFE 0.00 0.11 0.00 0.43 0.01 0.95

TWFE Imputation 0.00 0.94 0.00 1.67 0.01 2.60

TWFE Imputation

with Covariates

0.00 0.17 0.00 0.29 0.01 0.44

Factor Imputation -0.00 0.02 -0.00 0.03 0.00 0.05

Panel C: Factor Model. Parallel Trends Do Not Hold

Bias

(
τ̂6
)

MSE

(
τ̂6
)

Bias

(
τ̂7
)

MSE

(
τ̂7
)

Bias

(
τ̂8
)

MSE

(
τ̂8
)

TWFE -1.63 2.77 -3.27 11.05 -4.90 24.84

TWFE Imputation -4.90 24.81 -6.53 44.12 -8.16 68.93

TWFE Imputation

with Covariates

-0.92 1.06 -1.22 1.88 -1.53 2.93

Factor Imputation 0.01 0.03 0.01 0.05 0.02 0.09

Notes. This table presents a set of simulations with 10000 simulations. Each panel contains one of three

data-generating processes described in the text. Each row in a panel consists of one of the four treatment

effect estimators as described in the text. The columns report average bias and mean-squared error for the

three post-treatment treatment effects.
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Figure 1—Bias of TWFE Imputation with Covariates

Notes. This figure plots the average and empirical 95% confidence intervals for treatment effect estimates in

the final period, τ̂8. We estimate the TWFE imputation estimator that includes wiβt linearly in the model

and our the factor imputation we propose using wi instead as an instrument. We vary the signal to noise

ratios of wi to make it a better or worse measure for the factor loading. For each signal to noise ratio, we

run 5000 simulations.

i.e. wi = γi, the bias is completely removed. Regardless, the factor model imputation estimator is

unbiased in all cases. This experiment echos the results of Kejriwal et al. (2021). However, we

note that our results are still generous to estimators that use such noisy measure because we

generate wi as an unbiased estimator of γi. The instrument requirement for QLD estimation does

not require unbiased estimation of γi for identification of the normalized parameters.

5— Application

We revisit the literature on estimating local labor market effects of Walmart store openings

(Basker, 2005; Neumark et al., 2008; Volpe and Boland, 2022). The primary identification concern

is that Walmart targets where to open stores based on local economic trajectories (Neumark et al.,

2008). For instance, if Walmart targeted areas with positive underlying economic fundamentals in

anticipation of their growing consumptive expenditures, then the non-treated counties would fail

to be a valid counterfactual group in the two-way error model. Indeed, we observe significant

differences in both employment trends for treated counties in our data. Volpe and Boland (2022)

point to conflicting results on retail employment with two leading papers finding effects of opposite

signs. Employing different instrumental variable strategies, Basker (2005) finds positive effects on

23



retail employment while Neumark et al. (2008) finds negative effects. For this reason, we revisit

this question with an alternative strategy to answer this question.

We construct a dataset following the description in Basker (2005). In particular, we use the

County Business Patterns dataset from 1964 and 1977-1999, subsetting to counties that (i) had

more than 1500 employees overall in 1964 and (ii) had non-negative aggregate employment growth

between 1964 and 1977.
18
We use a geocoded dataset of Walmart openings from Arcidiacono et al.

(2020) to construct our treatment variable. Our treatment dummy is equal to one if the county

has any Walmart in that year and our group variable denotes the year of entrance for the first

Walmart in the county.
19
We drop any county that was treated with g ≤ T0 = 1985 so that we

we have 9 pre-periods to use when estimating the factor model. Our remaining sample consists of

1274 counties (about 500 fewer than the sample used in Basker (2005) since we drop units treated

between 1977 and 1985). We estimate impacts on retail and wholesale employment.
20
Walmart

is a more vertically integrated business, so we expect Walmart to compete in the retail and the

wholesale sectors (Basker, 2005).

First, we estimate the two-way fixed effect imputation estimator proposed by Borusyak et al.

(Forthcoming) and estimate event-study effects on (log) retail and wholesale employment. In

particular, we use the following model

log(yit) = µi + λt +
13∑

ℓ=−22

τ ℓdℓit + uit (28)

where i denotes county, t denotes year, yit is either retail or wholesale employment, and dℓit =

1(t− gi = ℓ) are indicator variables denoting event-time. Results of the event-study estimates are

presented in panel (a) of figure 2 and figure 3.

For both retail and wholesale employment, counties receivingWalmarts had faster employment

growth relative to the control counties, emphasizing our concern over endogenous opening

decisions. In the spirit of Freyaldenhoven et al. (Forthcoming) and Rambachan and Roth (2023),

18. We use the 1977-1999 dataset with imputed values from Eckert et al. (2021).

19. For our sample 82.4% of our counties receive ≤ 1 Walmart and another 10.4% receive two Walmarts in the

sample, alleviating some concerns of making the treatment binary.

20. Retail employment corresponds with NAICS 2-digit codes 44 and 45 and wholesale employment corresponds to

NAICS 2-digit code 42.
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we draw the line of best fit for the 15 most-recent pre-treatment estimates (τ̂ ℓ for −15 ≤ ℓ < 0)

and extend it into the post-treatment estimates. For both retail and wholesale employment, the

pre-trend lines would suggest that a large portion of the estimated effect is a continuation of

already existing trends. However, there still appears to be positive effects on retail employment (if

the pre-trend violations were indeed linear in the post-treatment period).

We use the QLD estimator of Ahn et al. (2013) to estimate the factors as described in remark 1.

For this factor estimator, we need a set of instruments that satisfy the two standard instrument

requirements: relevancy and exclusion. Intuitively, the relevancy restriction requires that the

instruments are correlated with the full vector of factor-loadings. That is, the instruments should

be selected as ‘proxies’ for the kinds of economic factor-loadings that the researcher is concerned

of. The exclusion restriction requires that the instrument values are uncorrelated with location-

specific idiosyncratic shocks. For this reason, we use baseline covariate values as instruments to

avoid shocks to the covariates that are correlated with shocks to the outcome variable.

We select instruments that we suspect are driven by the general macroeconomic trends that

cause differential retail employment growth in the 1980s and 1990s. For example, retail employment

is likely driven by consumptive expenditures which in turn are reflective of local labor market

trends. Therefore, we use instruments that we think proxy for characteristics that determine local

labor market trends. Specifically, we use the 1980 baseline values of the following variables as

instruments: share of population employed in manufacturing, shares of population below and

above the poverty line; shares of population employed in the private-sector and by the government,

and shares of population with high-school and college degrees.
21
We use baseline shares to prevent

our instruments from picking up on contemporaneous economic shocks that could be correlated

with Walmart opening, i.e. to avoid violations of the exclusion restriction. Note that instead of

estimating ATT(g, t), we estimate ATT
ℓ
pooling across (i, t) with ℓ = t − gi as described after

Theorem 2.

The results of our estimator are presented in panel (b) of figure 2 and figure 3.
22

For retail

21. All of these values are obtained from 1980 Census Tables accessed from Manson (2020).

22. We carry out the test to determine the correct number of factors p following the discussion in Ahn et al. (2013).

For retail, the p-value of the over-identification test were as follows: p = 0 with a p-value of 1.56e-5; p = 1 with a

p-value of 0.001; p = 2 with a p-value of 0.133. Since p = 2 is the first value where we fail to reject the null at a 10%

level, we set p = 2. Similarly, we selected p = 1 for wholesale since the p-values were: p = 0 with a p-value of 0.049;

and p = 1 with a p-value of 0.40.
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Figure 2—Effect of Walmart on County log Retail Employment

(a) TWFE Imputation Estimator
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Notes. This figure plots point estimates and bootstrapped 95% confidence intervals for event-study treatment

effects on log retail employment. Panel (a) estimates effects using the TWFE imputation estimator proposed

in Borusyak et al. (Forthcoming). Panel (b) estimates effects using the generalized imputation estimator we

propose in Section 3 with p = 2 and using the following instruments: 1980 share of population employed

in manufacturing, 1980 shares of population below and above poverty line; 1980 shares of population

employed in private-sector and by the government, 1980 shares of population with high-school degree and

college degree. The red lines correspond to a linear estimate of pre-treatment point estimates for event

time -15 to -1 and is extended into the post-treatment periods.
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Figure 3—Effect of Walmart on County log wholesale Employment

(a) TWFE Imputation Estimator
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Notes. This figure plots point estimates and bootstrapped 95% confidence intervals for event-study treatment

effects on log wholesale employment. Panel (a) estimates effects using the TWFE imputation estimator

proposed in Borusyak et al. (Forthcoming). Panel (b) estimates effects using the generalized imputation

estimator we propose in Section 3 with p = 1 and using the following instruments: 1980 share of population

employed in manufacturing, 1980 shares of population below and above poverty line; 1980 shares of

population employed in private-sector and by the government, 1980 shares of population with high-school

degree and college degree. The red lines correspond to a linear estimate of pre-treatment point estimates

for event time -15 to -1 and is extended into the post-treatment periods.
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employment, there is basically no pre-trend violations with the pre-treatment point estimates

centered on zero. After removing the pre-existing economic trends, the point estimates are smaller

than estimated by the two-way error model with an estimated effect on employment of around 6%

on average in the post-treatment periods. Evaluated at the median baseline retail employment of

1417 employees, this would imply an increase in about 85 jobs, which is in line with the estimates

of Basker (2005) and Stapp (2014) who use alternative instrumental variables strategies. It is

important to note that post-treatment estimates are noisier than the TWFE estimates largely due

to estimating the factor proxies in the first stage. This problem is at its worst for the furthest

event-times due to very few counties being averaged over in the last few bins. We view this as a

worthy trade-off since the point estimates are much less likely to be biased.

Turning to wholesale employment, we see a similar story with our estimator removing most

of the pre-trend violations. In this case, however, the estimated effects flip signs with an estimated

effect of around -6%, although they are not statistically significant at the 5% level. Evaluated at the

1977 median wholesale employment of 410, this suggests a decrease of about 25 jobs, which is

similar to what Basker (2005) finds. Overall, we find effects very much in line with those reported

in Basker (2005).

Our estimator allows for any root-N consistent estimator of the factor’s column space to be

‘plugged-in’ and used for estimation of treatment effects. To show the versatility of the method,

we use three different factor estimators in figure 4. First, we use our original quasi-differencing

estimator from figure 2. Second, we use the common correlated effects (CCE) estimator originally

proposed in Pesaran (2006). This estimator uses a set of covariates,X , which are generated by

the same factors, F , as the outcome variable:

Xit = α′
iFt + νit. (29)

Under this assumption, the cross-sectional averages of X (averaged over the never-treated group)

consistently span the column space of F . In our application, we use log employment for the

manufacturing, construction, agriculture, and healthcare 2-digit NAICS codes. The choice of these

covariates is plausible if the same sort of national shocks that affect retail employment also affect

these other sectors. We more formally analyze this estimator in Brown et al. (2023), which derives

28



the asymptotic distribution of the estimates. One advantage of this factor estimator is that it

allows decomposition of treatment effects into direct effects and mediated effects that operate

through the covariates, Xit.

Last, we use the principal components estimator originally proposed in Bai (2009). This

estimator uses the eigenvectors of the matrix Y Y ′
with the p largest eigenvalues as estimates for

F .
23
The advantage of this estimator is that no instrument or additional covariates are required.

However this comes at the cost of requiring long panels, which may be infeasible to assume in

our application.

The results of each estimator are presented in figure 4. All three estimators are effective at

removing underlying trends that the treated counties experienced. Moreover, the estimated effects

are similar between estimators suggesting that all three are doing a good job at estimating the

underlying factors. This figure highlights the broad applicability of our identification results,

allowing the factor estimator of choice to be tailored to the research context at hand. In panel (b),

we use log wholesale employment as an outcome. The CCE and the quasi-differencing estimators

produce very similar results, while the principal components estimator suggests positive growth

in employment outcomes in later years. Corresponding confidence intervals are very large,

suggesting that these results are too noisy to draw any meaningful conclusions. This could be due

to wholesale employment being too auto-correlated for the factor estimates to be consistent, or

because we do not have a large enough time series to get a meaningful asymptotic approximation

of the factors.

To highlight the importance of the uncertainty from estimation of the factors in the first stage,

we recreate confidence intervals from our generalized imputation estimator with the QLD first

stage using the nonparametric standard errors that are derived in Theorem 3. Results are given in

figure 5. The standard errors on point estimates are far smaller, with estimates becoming strongly

significant in wholesale Employment. This result shows an important step for future research in

finding more efficient estimates of the factors. For instance, we consider the common correlated

effects estimator in a follow-up paper. The CCE model generally implies that the nonparametric

standard errors are valid when there is a common factor model for time-varying covariates.

23. This imputation estimator is proposed by Xu (2017) in the context of large panels. The author uses an alternative

identification strategy that fails to work in short-panels.
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Figure 4—Generalized Imputation Estimator for Effect of Walmart on County Employ-
ment with Different Factor Estimators

(a) log Retail Employment
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Notes. This figure presents estimated treatment effects of Walmart entry on county-level log retail employ-

ment using the generalized imputation procedure proposed in section 2.1. The factor estimation procedures

include the principal components estimator proposed in Bai (2009), the common correlated effects estimator

proposed in Pesaran (2006), and the quasi-differencing estimator proposed in Ahn et al. (2013). Details of

the estimation procedures appear in the text.
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Figure 5—Generalized Imputation Estimator for Effect of Walmart on County Employ-
ment with Naive Standard Errors

(a) log Retail Employment

-0.2

-0.1

0.0

0.1

0.2

0.3

-20 -10 0 10

Event Time
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Notes. This figure recreates estimates from panel (b) of figure 2 and figure 3 with confidence intervals

formed ignoring the uncertainty deriving from first-stage estimates of θ.

6— Conclusions

We consider identification and inference of functions of heterogeneous treatment effects in a linear

panel data model. We show how to relax the usual parallel trends assumption by introducing a

linear factor model in the error. Our main identification result shows that a consistent estimator of

the unobserved factors is all that one needs to estimate the dynamic treatment effect coefficients.

This result is general and can be implemented by a number of modern interactive fixed effects

estimators, such as quasi-long-differencing, internally generated instruments, common correlated

effects, or principal components, allowing for both large and small numbers of pre-treatment time

periods. Further work can demonstrate both theoretical and finite-sample properties of these

various estimators of the factors and how they affect to ATT estimation, especially for larger time

series. The GMM imputation framework should also be examined in the context of unbalanced

panels as in Rai (2023).

While a factor model nests the usual two-way error structure, we explicitly model the level

fixed effects in addition to the factors. This setting allows us to provide useful tests for the

consistency of the TWFE estimator. We also show that one must remove the unit and time fixed

effects in a particular way so as to preserve the common factor structure in all time periods for all

individuals. We provide such a transformation and prove a novel identification result for TWFE

imputation estimators of ATTs.

We implement the QLD estimator of Ahn et al. (2013) in a study of the local impact of Walmart

31



openings. We demonstrate findings consistent with the IV estimation strategy of Basker (2005).

Our estimator is shown to remove pre-trends that bias the usual TWFE estimates. Similar results

are found using common correlated effects in the first stage. A principal components estimator is

also explored, but performs suspiciously for the given problem. The QLD identification scheme

can also allow sequentially exogenous outcomes like those generated by dynamic models. We

leave this possibility for future study.
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Appendix for “Dynamic Treatment Effect Estimation with Interactive Fixed Effects and

Short Panels”

A— Proofs

Proof of Theorem 1

Let t ≥ g for the given group g.

E(yit − P (F ′
t ,Ft<g)yi,t<g | Gi = g) = E(yit(1) | Gi = g)− E(P (F ′

t ,Ft<g)yi,t<g | Gi = g)

We use the fact that

E(P (F ′
t ,Ft<g)yi,t<g | Gi = g) = E

(
F ′

t (F
′
t<gFt<g)

−1F ′
t<gyi,t<g | Gi = g

)
= E

(
F ′

t (F
′
t<gFt<g)

−1F ′
t<g

[
Ft<gγi + ui,t<g

]
| Gi = g

)
= E

(
F ′

tγi + F ′
t (F

′
t<gFt<g)

−1F ′
t<gui,t<g | Gi = g

)
= E(yit(∞) | Gi = g)

The second equality hold by Assumption 2 and the fact that yi,t<g = yi,t<g(0). The final equality

holds by Assumption 2.

For the second part of the theorem, note that from the column span condition, there exists a

m× p matrixA such that

F ∗A = F (A1)

A defines the linear combinations of the columns of F ∗
that span the columns of F . Thus
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F ∗′
t A = F ′

t . We then have

F ∗′
t (F ∗′

t<gF
∗′
t<g)

−1F ∗′
t<gFt<gγi = F ∗′

t (F ∗′
t<gF

∗
t<g)

−1F ∗′
t<gF

∗′
t<gAγi

= F ∗′
t Aγi

= F ∗′
t γi

If m = p so that F also has full column rank, we can make the stronger statement that the

imputation matrices of F and F ∗
are equal:

P (Ft≥g,Ft<g) = Ft≥g(F
′
t<gFt<g)

−1F ′
t<g

= Ft≥gA(A′F ′
t<gFt<gA)−1A′F ′

t<g

= F ∗′
t≥g(F

∗′
t<gF

∗
t<g)

−1F ∗′
t<g

= P (F ∗
t≥g,F

∗
t<g)

where the second equality holds becauseA and (F ′
t<gFt<g) are full rank.

□

Proof of Lemma 2.1

We first derive the averages defined in Section 2.2 in terms of the potential outcome framework:

y∞,t =
1

N∞

N∑
i=1

Di∞yit = µ∞ + λt + Ftγ∞ + ut,∞

yi,t≤T0
=

1

T0

T0∑
t=1

yit = µi + λt<T0 + F t<T0γi + ui,t<T0

y∞,t<T0
=

1

N∞T0

N∑
i=1

T0∑
t=1

Di∞yit = µ∞ + λt<T0 + F t<T0γ∞ + u∞,t<T0

where µ∞ and γ∞ are the averages of the never-treated individuals’ heterogeneity and F t<T0 and

λt<T0 are the averages of the time effects before anyone is treated. The error averages have the

same interpretation as the outcome averages.

The definition of τit is the difference between treated and untreated potential outcomes for
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unit i at time t, so for any (i, t), yit = dityit(1) + (1− dit)yit(∞) = ditτit + yit(∞). Then

ỹit = ditτit + F ′
tγi − F

′
t<T0

γi − F ′
tγ∞ + F t<T0γ∞ + uit − ut,∞ − ui,t<T0 + u∞,t<T0

= ditτit + (Ft − F t<T0)
′(γi − γ∞) + uit − ut,∞ − ui,t<T0 + u∞,t<T0

Taking expectation conditional on Gi = g gives E(uit − ui,t<T0 | Gi = g) = 0 by Assumption

2 and E(u∞,t<T0 − ut,∞ | Gi = g) = E(u∞,t<T0 − ut,∞) = 0 by random sampling and iterated

expectations.

□

Proof of Theorem 3.1

Asymptotic normality is a consequence of well-known large sample GMM theory. See, for example,

Hansen (1982).

We only need to derive the asymptotic variances. Note that gi∞(θ) ⊗ gig(θ, τg) = 0 (from

the Dig terms) and gih(θ, τh)⊗ gik(θ, τk) = 0 almost surely uniformly over the parameter space

for all g ∈ G and h ̸= k. The covariance matrix of these moment functions, which we denote as

∆, is a block diagonal matrix.

∆ =



E(gi∞(θ)gi∞(θ)′) 0 0 . . . 0

0 E(gigG(θ, τgG)gigG(θ, τgG)
′) 0 . . . 0

.

.

.

.
.
.

0 0 0 . . . E(gig1(θ, τg1)gig1(θ, τ )
′)


We write the individual blocks as∆g for g ∈ G ∪ {∞}. The gradient is also simple to compute

because all of the moments are linear in the treatment effects. We define the overall gradientD
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and show it is a lower triangular matrix which we write in terms of its constituent blocks:

D =



E(∇θgi∞(θ)) 0 0 . . . 0

E(∇θgigG(θ, τgG)) −IT−gG+1 0 . . . 0

.

.

.

.
.
.

E(∇θgig1(θ, τg1)) 0 0 . . . −IT−g1+1


where we write the blocks in the first column asDg for g ∈ G ∪ {∞}. The diagonal is made up of

negative identity matrices because E
(

Digh

P(Digh
=1)

)
= 1.

Givenwe use the optimalweightmatrix, the overall asymptotic variance is given by (D′∆−1D)−1
.

∆ is a block diagonal matrix so its inverse is trivial to compute. First, we have

∆−1D =



∆−1
∞ D∞ 0 . . . 0

∆−1
gG
DgG −∆−1

gG
. . . 0

.

.

.

.
.
.

∆−1
g1
Dg1 0 . . . −∆−1

g1


The transpose of the gradient matrix is

D′ =



D′
∞ D′

gG
. . . D′

g1

0 −IT−gG+1 . . . 0

.

.

.

.
.
.

0 0 . . . −IT−g1+1


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so that we get

D′∆−1D =



∑
g∈G∪{∞}D

′
g∆

−1
g Dg −D′

gG
∆−1

gG
. . . −D′

g1
∆−1

gG

−∆−1
gG
DgG ∆−1

gG
. . . 0

.

.

.

.
.
.

−∆−1
g1
Dg1 0 . . . ∆−1

g1


We write this matrix as A B

C D


where A =

∑
g∈G∪{∞}D

′
g∆

−1
g Dg and D = diag{∆−1

g }g∈G . We then apply Exercise 5.16 of

Abadir and Magnus (2005) to get the final inverse. The top left corner of the inverse is F−1
where

(F )−1 = (A−BD−1C)−1

=

 ∑
g∈G∪{∞}

D′
g∆

−1
g Dg −

(∑
g∈G

D′
g∆

−1
g Dg

)−1

= (D′
∞∆−1

∞ D∞)−1

= Avar(
√
N(θ̂ − θ))

The rest of the first column of matrices takes the form

−D−1CF−1 =


DgG

.

.

.

Dg1

 (D′
∞∆−1

∞ D∞)−1

=


DgG(D

′
∞∆−1

∞ D∞)−1

.

.

.

Dg1(D
′
∞∆−1

∞ D∞)−1


and the rest of the first row is −F−1BD−1 = (−D−1B′F−1)′ = (−D−1CF−1)′.
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Finally, the bottom-right block, which also gives the asymptotic covariance matrix of the ATT

estimators, is

D−1 +D−1CF−1BD−1 = D−1 +


DgG(D

′
∞∆−1

∞ D∞)−1D′
gG

. . . DgG(D
′
∞∆−1

∞ D∞)−1D′
g1

.
.
.

Dg1(D
′
∞∆−1

∞ D∞)−1D′
gG

. . . Dg1(D
′
∞∆−1

∞ D∞)−1D′
g1


The g’th diagonal elements of the resulting matrix is∆g +Dg(D

′
∞∆−1

∞ D∞)−1D′
g.

□

Proof of Theorem 3.2

We derive the limiting theory by multiplying ∆̂g by (Ng − 1)/Ng which produces the same limit

as N → ∞. We write

Ng − 1

Ng

∆̂g =
1

Ng

N∑
i=1

Dig∆̂ig∆̂
′
ig − τ̂gτ̂

′
g

We already know that τ̂g
p→ τg by Theorem 3.1. Note that

1

Ng

N∑
i=1

Dig∆̂ig∆̂
′
ig =

(
1

Ng

N∑
i=1

Digyi,t≥gy
′
i,t≥g

)
−

(
1

Ng

N∑
i=1

Digyi,t≥gy
′
i,t<g

)
P (Ft≥g(θ̂),Ft<g(θ̂))

′

− P (Ft≥g(θ̂),Ft<g(θ̂))

(
1

Ng

N∑
i=1

Digyi,t<gy
′
i,t≥g

)

− P (Ft≥g(θ̂),Ft<g(θ̂))

(
1

Ng

N∑
i=1

Digyi,t<gy
′
i,t≥g

)
P (Ft≥g(θ̂),Ft<g(θ̂))

′

GivenP (Ft≥g(θ̂),Ft<g(θ̂)) is equal to its infeasible counterpartP (Ft≥g,Ft<g) plus aOp(N
−1/2)

term, Assumption 1 and the weak law of large numbers imply

1

Ng

N∑
i=1

Dig∆̂ig∆̂
′
ig − τ̂gτ̂

′
g

p→ E(gig(θ, τg) | Gi = g) = ∆g

The inverse exists with probability approaching one by Assumption 5.

□
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B— Inference of Aggregate Treatment Effects

As in Callaway and Sant’Anna (2021), we can form aggregates of our group-time average treatment

effects. For example, event-study type coefficients would average over the τgt where t− g = e for

some relative event-time e with weights proportional to group membership. Consider a general

aggregate estimand δ which we define as a weighted average of ATT (g, t):

δ =
∑
g∈G

∑
t>T0

w(g, t)τgt (B1)

where the weights w(g, t) are non-negative and sum to one. Table 1 of Callaway and Sant’Anna

(2021) and the surrounding discussion describes various treatment effect aggregates and discuss

explicit forms for the weights.

Our plug-in estimate for δ is given by δ̂ =
∑

g∈G
∑

t>T0
ŵ(g, t)τ̂gt. Inference on this term

follows directly from Corollary 2 in Callaway and Sant’Anna (2021) if we have the influence

function for our τgt estimates. Rewriting our moment equations in an asymptotically linear form,

we have:

√
N
(
(θ̂′, τ̂ ′)′ − (θ′, τ ′)′

)
= −

(
1√
N

N∑
i=1

(D′∆−1D)−1D′∆−1gi(θ, τ )

)
+ op(1). (B2)

This form comes from the fact that the weight matrix is positive definite with probability approach-

ing one
24
. The first term on the right-hand side is the influence function and hence inference

on aggregate quantities follows directly. This result allows for use of the multiplier bootstrap to

estimate standard errors in a computationally efficient manner.

C— Inference in Two-Way Fixed Effect Model

We derive the asymptotic distribution of our imputation estimator based off of the two-way error

model in equation (1). First, we note that this estimator can be written in terms of the imputation

matrix from Section 2. In particular, let 1t be a T × 1 vector of ones up the t’th spot, with all zeros

24. This is a well-known expansion for analyzing the asymptotic properties of GMM estimators. See Chapter 14 of

Wooldridge (2010) for example.
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after. Define y∞ = (y∞,1, ..., y∞,T )
′
be the full vector of never-treated cross-sectional averages.

Then our imputation transformation can be written as

ỹi = [IT − P (1T ,1T0)] (yi − y∞) (C1)

where the tth component of the above T -vector is

ditτit + ũit, (C2)

with ũit is defined as the same transformation as ỹit.

The imputation step of our estimator is a just-identified system of equations. As such, we

do not need to worry about weighting in implementation and inference comes from standard

theory of M-estimators. In fact, we have the following closed-form solution for the estimator of a

group-time average treatment effect:

τ̂gt =
1

Ng

∑
i

Digỹit, (C3)

where Ngt =
∑

i Dig is the number of units in group g.

The following theorem characterizes estimation under the two-way error model:

Theorem C1. Assume untreated potential outcomes take the form of the two-way error model

given in equation (1). Suppose Assumptions 1 and 3 hold, as well as Assumption 2 with γi = 0.

Then for all (g, t) with g > t, τ̂gt is conditionally unbiased for E(τit | Dig = 1), has the linear

form √
Ng

(
τ̂gt − τgt

)
=

1√
Ng

N∑
i=1

Dig(τit − τgt + uit − ui,t<T0 − u∞,t + u∞,t<T0) (C4)

and √
N1(τ̂gt − τgt)

d→N(0, V1 + V0) (C5)

as N → ∞, where V1 and V0 are given below and τgt = E(yit(g)− yit(∞) | Dig = 1) is the

group-time average treatment effect (on the treated). ■

Theorem (C1) demonstrates the simplicity of our imputation procedure under the two-way
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error model. While the general factor structure requires more care, estimation and inference will

yield a similar result.

Proof of Theorem C1

The transformed post-treatment observations are

ỹit = τit + uit − u∞,t − ui,t<T0 + u∞,t<T0 (C6)

To show unbiasedness, take expectation conditional on Dig = 1. This expected value is

E(τit + uit − ui,t<T0 − u∞,t + u∞,t<T0 | Dig = 1) = E(τit | Dig = 1) (C7)

by Assumption 2 and 3.

For consistency, note that averaging over the sample with Dig = 1, subtracting τgt, and

multiplying

√
Ng gives

√
Ng

(
τ̂gt − τgt

)
=

1√
Ng

N∑
i=1

Dig(τit − τgt + uit − ui,t<T0) +
1√
Ng

N∑
i=1

Dig(−u∞,t + u∞,t<T0)

(C8)

which is two normalized sums of uncorrelated iid sequences that have mean zero (by iterated

expectations) and finite fourth moments.

Rewriting the second term in terms of the original averages
1

N∞

∑N
i=1−ui,t + ui,t<T0 gives:

√
Ng

(
τ̂gt − τgt

)
=

1√
Ng

N∑
i=1

Dig(τit − τgt + uit − ui,t<T0) +

√
Ng

N∞

(
1√
N∞

N∑
i=1

Di∞(−ui,t + ui,t<T0)

)
(C9)

Since these terms are mean zero and uncorrelated, we find the variance of each term separately.

The first term has asymptotic variance

V1 = E
((

τit − τgt + uit − ui,t<T0

)(
τit − τgt + uit − ui,t<T0

)′
| Dig = 1

)
(C10)
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and the second term has asymptotic variance

V0 =
P(Dig = 1)

P(Di∞ = 1)
E
((

ui,t<T0 − ui,t

)(
ui,t<T0 − ui,t

)′
| Di∞ = 1

)
(C11)

The result follows from the independence of the two sums.

D— Including Covariates

We now discuss the inclusion of covariates in the untreated potential outcome mean model.

Allowing for covariates further weakens our parallel trends assumption by allowing selection to

hold on unobserved heterogeneity as well as observed characteristics. Identifying the effects of

covariates requires some kind of time and unit variation because we manually remove the level

fixed effects.

A common inclusion in the treatment effects literature is time-constant variables with time-

varying slopes. Suppose xi is 1×K vector of time-constant covariates. We could write the mean

model of the untreated outcomes as

E(yit(∞) | xi, µi,γi, Di) = xiβt + µi + λt + F ′
tγi (D1)

which allows observable covariates to have trending partial effects; covariates with constant slopes

are captured by the unit effect. After removing the additive fixed effects, xiβt will take the same

form as the residuals of factor structure. Estimating θ can be done jointly with the time-varying

coefficients by applying the QLD transformation to the vector of ỹit − x̃iβ̃t. We cannot identify

the underlying partial effects because of the time-demeaning, but we can include them for the

sake of strengthening the parallel trends assumption.

Time-constant covariates (or time-varying covariates fixed at their pre-treatment value) are

often employed because there is little worry that they are affected by treatment. However, we

could also include time- and individual-varying covariates of the form xit that are allowed to have

identifiable constant slopes if we assume their distribution is unaffected by treatment status. Let

xit be a 1×K vector of covariates that vary over i and t. We can jointly estimate a K × 1 vector
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of parameters β along with θ using the moments

E
(
H(θ)′(ỹi − X̃iβ)⊗wi | Gi = ∞

)
= 0 (D2)

where X̃i is the T ×K matrix of stacked covariates after our double-demeaning procedure.

We could also allow slopes to vary across groups and estimate them via the group-specific

pooled regressionDigyit onDigxit with unit-specific slopes onDigF̃ (θ̂)t for t = 1, ..., g−1. Then

we include the covariates and their respective slopes into the moment conditions

E
(
(ỹi,t≥g − X̃i,t≥gβg)− P (F̃t≥g, F̃t<g)(ỹi,t<g − X̃i,t<gβg)− τg | Gi = g

)
= 0 (D3)

We note that the above expression requires treatment to not affect the evolution of the covariates,

a strong assumption in practice. Chan and Kwok (2022) make a similar assumption for their

principal components difference-in-differences estimator. We study this assumption in the context

of the common correlated effects model in Brown et al. (2023).

E— Testing Mean Equality of Factor Loadings

We develop this test in the context of the QLD estimation of Ahn et al. (2013). Specifically, we

need E(γi) = E(γi | Gi = g) for all g ∈ G. Our imputation approach allows us to identify these

terms up to a rotation. To see how, let A∗
be the rotation that imposes the Ahn et al. (2013)

normalization. Then

P (Ip,F (θ)t<g)E(yi,t<g | Gi = g) =
(
F (θ)′t<gF (θ)t<g

)−1
F (θ)′t<gFt<g E(γi | Gi = g)

=
(
F (θ)′t<gF (θ)t<g

)−1
F (θ)′t<gF (θ)t<g(A

∗)−1 E(γi | Gi = g)

= (A∗)−1 E(γi | Gi = g)

where F (θ) = FA∗
.

It is irrelevant that the means of the factor loadings are only known up to a nonsingular

transformation, because A∗
is the same for each g ∈ G by virtue of the common factors. We note
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that

E(γi | Gi = g)− E(γi) = 0 ⇐⇒ (A∗)−1(E(γi | Gi = g)− E(γi)) = 0 (E1)

The results above show how we can identify (A∗)−1 E(γi | Gi = g) by imputing the pre-treatment

observations onto an identify matrix.

Collect the moments

E
(

Di∞

P(Di∞ = 1)
H(θ)ỹi ⊗wi

)
= 0

E
(

Di∞

P(Di∞ = 1)
(P (Ip,F (θ))yi − γ∗)

)
= 0

E
(

DigG

P(DigG = 1)

(
P (Ip,F (θ)t<gG)yi,t<gG − γ∗

gG

))
= 0

.

.

.

E
(

Dig1

P(Dig1 = 1)

(
P (Ip,F (θ)t<g1)yi,t<g1 − γ∗

gG

))
= 0

The parameters (γ∗,γ∗
gG
, ...,γ∗

g1
) represent the rotated means of the factor loadings. γ is the

unconditional mean (A∗)−1 E(γi) and γg is the conditional mean (A∗)−1 E(γi | Gi = g) for g ∈ G.

We include estimation of the factors for convenience, so that one does not need to directly calculate

the effect of first-stage estimation on the asymptotic variances of conditional means.

Joint GMM estimation of the above parameters, including θ, then allows one to test combina-

tions of the rotated means. Specifically, we have the following result:

Theorem E2. If E(γi | Gi = g) = E(γi) for all g ∈ G, then

γ∗ = γ∗
gG

= ... = γ∗
g1

(E2)

■
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